123 research outputs found

    Radiation-induced G1 arrest is not defective in fibroblasts from Li-Fraumeni families without TP53 mutations

    Get PDF
    Radiation-induced G1 arrest was studied in four classes of early passage skin fibroblasts comprising 12 normals, 12 heterozygous (mut/wt) TP53 mutation-carriers, two homozygous (mut/–) TP53 mutation-carriers and 16 strains from nine Li-Fraumeni syndrome or Li-Fraumeni-like families in which no TP53 mutation has been found, despite sequencing of all exons, exon–intron boundaries, 3′ and 5′ untranslated regions and promoter regions. In an assay of p53 allelic expression in yeast, cDNAs from these non-mutation strains behaved as wild-type p53. Using two different assays, we found G1 arrest was reduced in heterozygous strains with mis-sense mutations and one truncation mutation, when compared to the range established for the normal cells. Heterozygous strains with mutations at splice sites behaved like normal cells, whilst homozygous (mut/–) strains showed either extremely reduced, or no, arrest. Strains from all nine non-mutation families gave responses within the normal range. Exceptions to the previously reported inverse correlation between G1 arrest and clonogenic radiation resistance were observed, indicating that these phenotypes are not strictly interdependent. © 1999 Cancer Research Campaig

    Growth and renal function dynamics of renal oncocytomas on active surveillance

    Get PDF
    OBJECTIVES: To study the natural history of renal oncocytomas and address indications for intervention by determining how growth is associated with renal function over time, the reasons for surgery and ablation, and disease-specific survival. PATIENTS AND METHODS: The study was conducted in a retrospective cohort of consecutive patients with renal oncocytoma on active surveillance reviewed at the Specialist Centre for Kidney Cancer at the Royal Free London NHS Foundation Trust (2012 to 2019). Comparison between groups was performed using Mann–Whitney U-tests and chi-squared tests. A mixed-effects model with a random intercept for patient was used to study the longitudinal association between tumour size and estimated glomerular filtration rate (eGFR). RESULTS: Longitudinal data from 98 patients with 101 lesions were analysed. Most patients were men (68.3%) and the median (interquartile range [IQR]) age was 69 (13) years. The median (IQR) follow-up was 29 (26) months. Most lesions were small renal masses, and 24% measured over 4 cm. Over half (64.4%) grew at a median (IQR) rate of 2 (4) mm per year. No association was observed between tumour size and eGFR over time (P = 0.871). Nine lesions (8.9%) were subsequently treated. Two deaths were reported, neither were related to the diagnosis of renal oncocytoma. CONCLUSION: Natural history data from the largest active surveillance cohort of renal oncocytomas to date show that renal function does not seem to be negatively impacted by growing oncocytomas, and confirms clinical outcomes are excellent after a median follow-up of over 2 years. Active surveillance should be considered the 'gold standard' management of renal oncocytomas up to 7cm

    Defining the process to literature searching in systematic reviews: a literature review of guidance and supporting studies

    Get PDF
    BACKGROUND: Systematic literature searching is recognised as a critical component of the systematic review process. It involves a systematic search for studies and aims for a transparent report of study identification, leaving readers clear about what was done to identify studies, and how the findings of the review are situated in the relevant evidence. Information specialists and review teams appear to work from a shared and tacit model of the literature search process. How this tacit model has developed and evolved is unclear, and it has not been explicitly examined before. The purpose of this review is to determine if a shared model of the literature searching process can be detected across systematic review guidance documents and, if so, how this process is reported in the guidance and supported by published studies. METHOD: A literature review. Two types of literature were reviewed: guidance and published studies. Nine guidance documents were identified, including: The Cochrane and Campbell Handbooks. Published studies were identified through 'pearl growing', citation chasing, a search of PubMed using the systematic review methods filter, and the authors' topic knowledge. The relevant sections within each guidance document were then read and re-read, with the aim of determining key methodological stages. Methodological stages were identified and defined. This data was reviewed to identify agreements and areas of unique guidance between guidance documents. Consensus across multiple guidance documents was used to inform selection of 'key stages' in the process of literature searching. RESULTS: Eight key stages were determined relating specifically to literature searching in systematic reviews. They were: who should literature search, aims and purpose of literature searching, preparation, the search strategy, searching databases, supplementary searching, managing references and reporting the search process. CONCLUSIONS: Eight key stages to the process of literature searching in systematic reviews were identified. These key stages are consistently reported in the nine guidance documents, suggesting consensus on the key stages of literature searching, and therefore the process of literature searching as a whole, in systematic reviews. Further research to determine the suitability of using the same process of literature searching for all types of systematic review is indicated

    Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness

    Get PDF
    Hand grip strength is a widely used proxy of muscular fitness, a marker of frailty, and predictor of a range of morbidities and all-cause mortality. To investigate the genetic determinants of variation in grip strength, we perform a large-scale genetic discovery analysis in a combined sample of 195,180 individuals and identify 16 loci associated with grip strength (P<5 × 10−8) in combined analyses. A number of these loci contain genes implicated in structure and function of skeletal muscle fibres (ACTG1), neuronal maintenance and signal transduction (PEX14, TGFA, SYT1), or monogenic syndromes with involvement of psychomotor impairment (PEX14, LRPPRC and KANSL1). Mendelian randomization analyses are consistent with a causal effect of higher genetically predicted grip strength on lower fracture risk. In conclusion, our findings provide new biological insight into the mechanistic underpinnings of grip strength and the causal role of muscular strength in age-related morbidities and mortality.This research has been conducted using the UK Biobank Resource. The Fenland Study is supported by the UK Medical Research Council (MRC) (MC_UU_12015/1; MC_UU_12015/2; MC_UU_12015/3). EPIC-Norfolk is supported by the MRC (G401527, G1000143) and Cancer Research UK (A8257). The HCS is gratefully supported by the University of Newcastle (Australia) and the Fairfax Family Foundation. Sydney MAS is supported by the Australian National Health and Medical Research Council (NHMRC), grants ID568969, ID350833 and ID109308. Sydney MAS DNA was extracted by Genetic Repositories Australia, funded by NHMRC Enabling Grant 401184. The GEFOS Study, used as controls for the US and Jamaican athletes, was supported in part by NIH grants U01 HG004436 and P30 DK072488, and the Baltimore Geriatrics Research, Education, and Clinical Center of the Department of Veterans Affairs. The Novo Nordisk Foundation Center for Basic Metabolic Research is an independent Research Center at the University of Copenhagen partially funded by an unrestricted donation from the Novo Nordisk Foundation (www.metabol.ku.dk). TwinsUK was funded by the Wellcome Trust (WT), MRC, and European Union. The study also receives support from the National Institute for Health Research (NIHR) BioResource Clinical Research Facility and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust and King's College London. SNP Genotyping was performed by The WT Sanger Institute and National Eye Institute via NIH/CIDR. M.McC is a WT Senior Investigator and receives support from WT 090532 and 098381. TW is the recipient of a studentship from MedImmune. Research by A. Lucia is supported by Fondo de Investigaciones Sanitarias and Fondos Feder (grant # PI15/0558). EM-M. was a recipient of a Grant-in-Aid for JSPS Fellow from the Japan Society for the Promotion of Science. This work was supported in part by grants from the Grant-in-Aid for Scientific Research (B) (15H03081 to NF) of the Japanese Ministry of Education, Culture, Sports, Science and Technology and by a grant-in-aid for scientific research (to M. Miyachi) from the Japanese Ministry of Health, Labor, and Welfare. This work was further supported by NIH grants R01 AR41398 and U24 AG051129

    A user's guide to the Encyclopedia of DNA elements (ENCODE)

    Get PDF
    The mission of the Encyclopedia of DNA Elements (ENCODE) Project is to enable the scientific and medical communities to interpret the human genome sequence and apply it to understand human biology and improve health. The ENCODE Consortium is integrating multiple technologies and approaches in a collective effort to discover and define the functional elements encoded in the human genome, including genes, transcripts, and transcriptional regulatory regions, together with their attendant chromatin states and DNA methylation patterns. In the process, standards to ensure high-quality data have been implemented, and novel algorithms have been developed to facilitate analysis. Data and derived results are made available through a freely accessible database. Here we provide an overview of the project and the resources it is generating and illustrate the application of ENCODE data to interpret the human genome

    Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides

    No full text
    We investigate the behavior of holes in the valence band of a range of wide-band-gap oxides including ZnO, MgO, In2O3, Ga2O3, Al2O3, SnO2, SiO2, and TiO2. Based on hybrid functional calculations, we find that, due to the orbital composition of the valence band, holes tend to form localized small polarons with characteristic lattice distortions, even in the absence of defects or impurities. These self-trapped holes (STHs) are energetically more favorable than delocalized, free holes in the valence band in all materials but ZnO and SiO2. Based on calculated optical absorption and emission energies we show that STHs provide an explanation for the luminescence peaks that have been observed in many of these oxides. We demonstrate that polaron formation prohibits p-type conductivity in this class of materials

    Dual behavior of excess electrons in rutile TiO2

    No full text
    The behavior of electrons in the conduction band of TiO2 and other transition-metal oxides is key to the many applications of these materials. Experiments seem to produce conflicting results: optical and spin-resonance techniques reveal strongly localized small polarons, while electrical measurements show high mobilities that can only be explained by delocalized free electrons. By means of hybrid functional calculations we resolve this apparent contradiction and show that small polarons can actually coexist with delocalized electrons in the conduction band of TiO2, the former being energetically only slightly more favorable. We also find that small polarons can form complexes with oxygen vacancies and ionized shallow-donor impurities, explaining the rich spectrum of Ti3+ species observed in electron spin resonance experiments
    corecore