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Abstract The field of neuronal surface-directed antibody-

mediated diseases of the central nervous system has dra-

matically expanded in the last few years and now forms an

important cluster of treatable neurological conditions. In this

review, we focus on three areas. First, we review the

demographics, clinical features and treatment responses of

these conditions. Second, we consider their pathophysiology

and compare autoantibody mechanisms and their effects to

genetic or pharmacological disruptions of the target anti-

gens. Third, we discuss areas of controversy within the field,

propose possible resolutions, and explore new directions for

neuronal surface antibody-mediated diseases.
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Introduction

Neuroimmunology is a rapidly developing field with

increasing scope and relevance to multiple neurological pre-

sentations. Autoantibody-associated neurology has expanded

since the discovery of pathogenic acetylcholine receptor

autoantibodies in myasthenia gravis in the 1970s, and sub-

sequently other neuromuscular and peripheral nerve targets.

The first antibodies associated with diseases of the

central nervous system (CNS) were termed ‘onconeuronal’

antibodies due to their frequent cancer associations [1, 2].

These antibodies target intracellular proteins (such as Hu,

Yo, Ma2, Ri, Tr and CV2/CRMP5), the antibody levels do

not correlate with disease severity, and prognosis is poor

despite tumour removal and immunotherapies. A cytotoxic

T cell-mediated mechanism is thought to be central to their

pathophysiology and the role of the antibodies is less clear.

These features contrast markedly with the neuronal sur-

face-directed antibody (NSAb)-associated CNS disorders.

The antibodies are much less frequently associated with

tumours, and are directed against extracellular epitopes on

surface antigens strongly expressed within the CNS, such as

the N-methyl-D-aspartate receptor (NMDAR) [3] and leu-

cine-rich glioma-inactivated 1 (LGI1) [4]. The discovery of

these NSAbs has helped identify treatable neurological

conditions, with retrospective evidence that earlier treat-

ment improves patient outcomes [5]. Although research is

rapidly evolving, the available data strongly support path-

ogenic roles for the NSAbs. The antibody targets can be

divided empirically into three groups: excitatory neuro-

transmitter receptors, inhibitory neurotransmitter receptors,

ion-channel subunits or cell adhesion molecules.

NSAbs and their clinical features

Antibodies directed against proteins involved

in excitatory neurotransmission

NMDAR

Since their discovery in 2007 [3], NMDAR-antibodies now

represent a more frequent cause of encephalitis than viruses

in patients under the age of 30 [6]. This encephalitis shows a

stereotyped evolution from a viral prodrome to a neuro-

psychiatric presentation, with psychosis, cognitive dys-

function and seizures, followed by a progression to a

distinctive movement disorder, dysautonomia and coma [7].
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Since its original description the spectrum has widened

and this disease has been associated with fewer tumours

(Fig. 1a), almost all ovarian teratomas [7, 8], increasing

numbers of paediatric cases (with only a 6 % association

with a tumour seen in those under 12 [5, 7]), and more male

cases, particularly in younger and older age groups [5, 7, 9].

Mono- or oligo-symptomatic presentations in patients

with NMDAR-antibodies have also been recognised with

predominant seizures and psychosis [7, 8, 10, 11]. Other

presentations seen in a small proportion of NMDAR-anti-

body-positive patients include longitudinally extensive

transverse myelitis [12] and optic neuritis [13]. This

overlap with demyelinating diseases may relate to the

expression of NMDARs on oligodendrocytes. However, an

overlap with neuropsychiatric lupus, where double-stran-

ded DNA antibodies have been reported to cross-react with

the NMDAR [14, 15], is yet to be confirmed using cell-

based assay techniques (discussed below) [3, 7].

NMDAR-antibody encephalitis has an approximately

13 % untreated mortality, as compared to 9 % with

immunotherapy (Fig. 1b) [5]. One large study showed that

50 % of patients responded to first-line therapy [with cor-

ticosteroids, plasma exchange (PLEX) and/or intravenous

immunoglobulin (IVIG)]. Of the remaining 50 %, second-

line therapies (with cyclophosphamide and rituximab)

offered a good outcome in 37.5 % compared to the 12.5 %

that did not receive such therapies. Immunotherapy

administration was also associated with lower relapse rate,

often seen in the natural history of this disease (Figs. 1b, 2)

[5]. While it yet may transpire that immunotherapy has

little effect on the long-term outcomes of the disease sur-

vivors, importantly it appears to hasten recovery at 2 years

and reduce mortality.

a-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic

acid (AMPA-type (glutamate receptor)) receptor

Antibodies to the GluR1 andGluR2AMPA-receptor subunits

often associate with a rare limbic encephalitis (LE) in older

females, typicallywith tumours of the thymus, breast and lung

Fig. 1 a Trends in NMDAR-antibody encephalitis. Demographics of

published cases (series containing [3 patients) with NMDAR (N-

methyl-D-aspartate receptor)-antibody encephalitis. Note the slightly

decreasing median age (black line) and increasing male and falling

female representation (green and red, respectively). Tumour frequen-

cies (blue line) are falling, mainly due to the recent publications of

many paediatric cases. Figure adapted from Irani et al. [31]. b The

effect of immunotherapy on mortality, the percentage with a good

recovery (modified rankin score 0–2) and relapse-free recovery at

24 months. Data derived from Titulaer et al. [5]. c Key features of a

representative patient with faciobrachial dystonic seizures (FBDS).

Note the increasing seizure frequency (red line), poor response to

anti-epileptic drugs (AEDs), time of onset of cognitive impairment

(quantified by fall in Addenbrooke’s cognitive examination-Revised

score (ACE-R, green line)) and of hyponatraemia (orange line). IT

results in dramatic improvement in all features. LGI1 leucine-rich

glioma-inactivated, VGKC voltage-gated potassium channel—com-

plex antibody titres are shown in purple and black, respectively
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[16]. The syndrome of LE produces amnesia, disorientation

and seizures and is also seen in patients with GAD, LGI1 and

GABABR-antibodies, as discussed later. Some patients show

a good response to immunotherapy [16]. All examined

tumours expressed at least one of the antigens, and a pre-

dominance of one subunit in the tumourmirrored the antibody

preference seen in the same patient [16].

AMPA receptors are usually tetramers of GluR subunits

1–4. GluR1/2 and GluR2/3 subunits are mostly post-syn-

aptic and are expressed at especially high concentrations in

limbic brain regions [17]. AMPAR-antibody-associated

phenotypes have spread to include two patients with an

acute psychosis-like illness [18] and antibodies to GluR2/3

receptors were found in two patients with Rasmussen’s

encephalitis [Nibber et al. in preparation].

Antibodies to proteins involved in inhibitory

neurotransmission

GAD

Glutamic acid decarboxylase (GAD) is a widely expressed

intracellular enzyme which catalyses the synthesis of

gamma aminobutyric acid (GABA), the major inhibitory

CNS neurotransmitter. Antibodies to GAD are seen in type

1 diabetes mellitus, and usually at much higher titres in LE,

cerebellar ataxia, epilepsy and the stiff person syndrome

(SPS) spectrum [19].

SPS is characterised by rigidity, stimulus-induced

spasms, anxiety, and more rarely, oculomotor and auto-

nomic disturbances [19, 20]. By contrast, GAD-antibody-

associated LE is predominantly a disease of young women

and usually presents with AED-refractory epilepsy and

amnesia, but without rigidity or spasms. The clinical fea-

tures and GAD-antibody levels are often immunotherapy

resistant, and the disease shows a chronic course (Fig. 2)

[21]. However, serum and CSF IgGs from patients with

GAD-antibodies do reproduce some of the clinical features

of SPS in rodents [22]. The antibodies may access antigen

upon its cell-surface exposure during exocytosis or pro-

grammed cell death [23, 24] or perhaps co-exist with

pathogenic NSAbs. Indeed, antibodies to the AMPA, gly-

cine, GABAB and GABAA receptors, in addition to novel/

undefined NSAbs, have all been observed in patients with

GAD-antibody-related neurology [25–31].

Glycine receptor

Progressive encephalomyelitis with rigidity and myoclonus

(PERM) is at one end of the SPS spectrum with the poorest

prognosis, and usually these patients have no GAD-anti-

bodies [30]. In 2008, a patient with PERM without GAD-

antibodies was found to have antibodies directed against

the glycine-receptor (GlyR) alpha1 subunit [32]. Subse-

quently, GlyR-antibodies have been reported in patients

with classical and variant SPS, brainstem encephalitis, a

few with LE, many with PERM, and occasionally in

patients with demyelinating disease. There is a good

response to immunotherapy (median modified Rankin

Scale scores fall from of 5 to 1) [27, 33, 34]. Tumour

associations are infrequent but thymoma and lymphoma

have been reported [27]. The GlyR is expressed in the

upper and lower brainstem, diencephalon and the colliculi

as well as the dorsal and ventral horns of the spinal cord:

these localisations correlate well with the observed clinical

features [27].

GABAB receptor

GABAB-antibodies, predominantly reacting with the

GABAB1 subunit, have been associated with a form of LE,

usually of later life, with prominent seizures [25, 26]. More

recently the phenotype has expanded to include presenta-

tions with cerebellar ataxia, status epilepticus, and opso-

clonus myoclonus, often in patients with cognitive

impairment [25, 35]. There is a close association with

small-cell lung cancers (SCLC) [25, 26, 36], which express

the GABABR [25]. Mortality is high, especially in tumour-

related cases, but 80 % of patients initially respond to

immunotherapy, plus tumour removal where relevant [25].

GABAA receptor

Antibodies to the GABA a1/b3 subunits have recently been
described in a small number of patients. When detected at

1 5
Years 

Severity of 
symptoms

–NMDAR
–GAD
–LGI1/CASPR2

Fig. 2 The contrasting probable natural histories of three antibody-

related encephalitidies. Key things to note are the relapsing course

NMDAR (N-methyl-D-aspartate receptor)-antibody encephalitis, often

with a good long-term outcome. The LGI1 (leucine-rich glioma-

inactivated 1) or CASPR2 (contactin-associated protein 2)-associated

encephalitis has a tendency to be more monophasic often with

residual memory and functional deficits. GAD (glutamic acid

decarboxylase)-antibody-associated LE has an insidious onset and

tends to adopt a more chronic course with ongoing seizures and

memory deficits
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high serum titres ([1:160) and in the CSF, these were

associated with LE, status epilepticus or epilepsia partialis

continua [28]. Patients have unusual cortical and subcor-

tical imaging hyperintensities, a variable response to

immunotherapy, and high mortality due to status epilepti-

cus. Twelve patients with other neurological diseases had

lower titre serum GABAA-antibodies, not detected in the

CSF, with a broader spectrum of diseases including LE,

SPS, and opsoclonus myoclonus [28]. Autoantibodies

against the a1 and/or c2 subunits were found in patients

with seizures (47 %), memory impairment (47 %) and

hallucinations (33 %); one had non-Hodgkin’s lym-

phoma (Pettingill et al. in press). In that study, however,

many patients were not considered to have immune-med-

iated diseases, and immunotherapies were not used in most.

Nevertheless, the antibodies internalised the GABAAR

subunits in vitro, consistent with their pathogenic potential

[37] (Pettingill et al. in press).

Antibodies directed against ion-channel-associated

proteins and cell adhesion proteins

Voltage-gated potassium channel (VGKC) complex

Antibodies to the VGKC-complex were originally descri-

bed in patients with peripheral nerve hyperexcitability

(PNH) syndromes [38]. Since 2001, these antibodies have

been recognised in patients with CNS features including

Morvan’s syndrome (MoS) [39, 40], LE [4, 41, 42], fa-

ciobrachial dystonic seizures (FBDS) [43–45], a minority

of patients with cryptogenic epilepsies [46], neuropathic

pain syndromes [47] and some cerebellar ataxias [48].

VGKC-complex antibodies are detected by immunopre-

cipitation of iodinated alpha-dendrotoxin (a-DTX)-labelled
VGKCs from digitonin-solubilised mammalian brain

homogenates. a-DTX is known to bind with high affinity to

the VGKC subunits Kv1.1, 1.2 and 1.6. Based on this,

Kv1.1, 1.2 and 1.6 were considered the likely target epi-

topes [49]. However, only a minority of IgGs bind the Kv1

subunits themselves [4]. A much larger proportion bind to

target cell-surface domains of proteins which are tightly

associated with Kv1 subunits; most commonly LGI1 and

contactin-associated protein-2 (CASPR2) [4, 39, 50]

(Fig. 3). A smaller proportion were found to target cont-

actin-2, which have been reported in association with

LGI1- and CASPR2-antibodies [4].

LGI1

LGI1 is a secreted protein that interacts in situ with Kv1.1,

Kv1.2 and AMPARs. LGI1 forms a trans-synaptic protein

complex with presynaptic ADAM23 (a disintegrin and

metalloproteinase 23) and post-synaptic ADAM22 [51]. It

is expressed throughout the brain, especially in the hip-

pocampus and neocortex [4].

LGI1-antibodies are often found in LE [4, 52]. As the

descriptions of LGI1-antibody-positive cohorts have

grown, it has become increasingly clear that this is only

rarely paraneoplastic, has an equal sex distribution,

responds well to immunotherapy, and has a low overall

mortality [4, 45, 50, 53] (see Table 1). Although there are

descriptions of untreated partial recovery over around

2 years [54, 55], larger cohorts suggest that early immu-

notherapy offers the best short-term outcomes [42, 56], and

recent data indicate that the addition of PLEX and/or IVIG

to corticosteroids may not alter 4-year outcomes [31].

Several studies have described LGI1-antibodies in

patients with isolated seizure syndromes of multiple

semiologies, which are often immunotherapy-responsive

[57–59]. A recent clinical observation has been the asso-

ciation of a highly distinctive seizure semiology—termed

faciobrachial dystonic sseizures (FBDS)—in patients with

LGI1-antibodies. These stereotyped events, characterised

by their high frequency (median 50/day), short duration

(usually\3 s) and their predilection for the hemiface and

ipsilateral arm, are often refractory to anti-epileptic drugs

but preferentially respond to the addition of immunother-

apies (see Fig. 1c) [43–45, 60, 61]. Importantly, the onset

of FBDS often precedes the onset of the cognitive

impairment seen in patients with LE and one small pro-

spective study has suggested that cognitive impairment

may be avoided with early treatment of FBDS [43–45, 60].

In addition, ictal bradycardia and piloerection may be

seizure semiologies enriched in patients with LGI1-anti-

bodies [62, 63].

CASPR2

CASPR2 is a transmembrane protein localised to the jux-

taparanode of myelinated axons. The extracellular domain

of CASPR2 interacts with contactin-2 in both cis and trans

(Fig. 3b), and in association with other proteins is

responsible for concentrating Kv1.1 and Kv1.2 channels at

the juxtaparanode [64]. Therefore, CASPR2 has cell

adhesion and Kv1-partner functions. Patients with LE,

PNH and subacute cerebellitis [48] have CASPR2-anti-

bodies in around 10, 30 and 10 % of cases, respectively.

However, CASPR2-antibodies are most consistently asso-

ciated with MoS, in which about 50 % of patients also have

LGI1-antibodies [39]. This combination may generate both

the CNS and PNS features of MoS. MoS occurs almost

exclusively in males, and interestingly, the prostate is one

of the few non-neuronal sites of CASPR2 expression and

CASPR2-antibody-associated MoS has been described

post-scrotal hydrocele drainage [65]. Another potential

immunisation mechanism is via the associated thymomas
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present in around 50 % of MoS and especially in patients

with CASPR2-antibodies [39].

Other VGKC-complex proteins

Most VGKC-complex antibody-positive patients with

higher VGKC-complex titres ([400 pM), have LGI1- or

CASPR2-antibodies. Much more commonly at lower levels

(100–400 pM), the targets of the antibodies are not yet

known [4, 53]. Serum and CSFs from many of these

patients do not show binding to the surface of live hippo-

campal neurons (Vincent, unpublished), suggesting that

they may target intracellular VGKC-complex epitopes.

While these may not be pathogenic, the antibodies may still

be predictive of a neuroinflammatory syndrome and a

response to immunotherapy, or an inflammatory compo-

nent to a neurodegenerative disease [66, 67] (Hacohen

et al. submitted).

Dipeptidyl-peptidase-like protein-6 (DPPX)

A subacute LE associated with tremor, myoclonus and

diarrhoea was described in association with antibodies to

DPPX, a cell-surface protein associated with the Kv4.2

potassium channel [68]. A more recent study has high-

lighted the brainstem focus of this condition and the mul-

tiorgan dysautonomia with bladder and cardiac

involvement [69]. The condition is usually severe, with a

gradual response to immunotherapy and relapses without

immunotherapy [68].

IgLON5

Not all NSAbs are pathogenic. Antibodies to IgLON5, a

neuronal cell adhesion protein involved in synapse for-

mation, were described in patients with a progressive

complex neurodegenerative sleep disorder with disordered
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Fig. 3 Illustration of the VGKC-complexes: the association of Kv1s
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breathing [70]. The most striking aspect of these patients

was their lack of response to immunotherapy and atypical

brainstem tau deposition [70]. The association of an NSAb

with a neurodegenerative disease adds to evidence from

CJD studies [71, 72] that NSAbs may not always play a

primary role but can be secondary to neuronal damage with

possible implications for disease progression or disease

biomarkers.

Antibodies associated with glial damage, specifically to

aquaporin-4 (AQP4) and myelin oligodendrocyte glyco-

protein (MOG), are summarised in Table 1.

Pathogenic considerations

Exactly how these antibodies lead to the observed pathol-

ogy is an area of active research (Fig. 4). For instance,

many but not all NSAbs induce receptor internalisation

in vitro resulting in receptor loss, as observed in myas-

thenia gravis. This applies to NMDAR [8], AMPAR [16],

GABAAR [37] and GlyR [27] antibodies and can be

demonstrated in cell cultures. Other NSAbs may mediate a

direct effect on channel kinetics. LGI1- and DPPX-anti-

bodies may indirectly induce channel modulation: for

example, LGI1-antibodies appear to reduce Kv1 channel

function [73] and to decrease AMPAR expression in vitro

[74]. It is likely that the antibodies binding to LGI1 disrupt

the trans-synaptic bridge between the pre- and post-syn-

aptic membranes and this may affect the function of both

VGKCs and AMPARs. In addition, however, antibodies of

the IgG1 and IgG3 subclasses have the ability to fix

complement. In biopsy studies, this has been shown to

occur with AQP4- (and less so LGI1-) antibodies but not

with NMDAR-antibodies [75, 76]. Mechanisms that appear

to prevent complement fixation by the IgG1-subclass

NMDAR-antibodies should be explored in future studies.

To further explore NSAb-pathogenicity, below we

highlight features of genetic or pharmacological situations

in which the target antigen is relatively specifically dis-

rupted and compare this to the corresponding antibody-

mediated process (Table 2).

Mutations, drugs and antibodies which target

the NR1 subunit

NR1 homozygous null mice die 8 h after birth and hypo-

ventilate, similar to patients with NMDAR-antibody

encephalitis [77]. Mice with a 50 % NR1 genetic knockout

exhibit both psychiatric and cognitive signs, similar to

those seen in NMDAR-antibody encephalitis but without a

movement disorder or seizures [78]. As described in

Table 2, polymorphisms and de novo mutations in the

human NR1 subunit gene (GRIN1), and NMDAR-antago-

nists such as ketamine and phencyclidine, recapitulate

many aspects of NMDAR-antibody encephalitis. However,

the ‘full’ syndrome appears to be unique to autoantibodies

targeting the NR1 subunit.

GABAB receptor mutations and medications

Pathophysiologically, GABABR-antibody LE shows pre-

dominant seizures. This concurs with observations from

murine genetic and pharmacological studies of GABABR

downregulation [79, 80], but by contrast to most other

antibodies GABABR-antibodies do not appear to internalise

their target antigen. There are no documented GABAB1R

human mutants, but GABAB1R polymorphisms have been

associated with temporal lobe epilepsy [81], schizophrenia

[82] and obsessive–compulsive disorder [83].

LGI1 mutations

Leucine-rich glioma-inactivated 1 homozygous null mice

develop myoclonic seizures at days 12–18 of life, dying

soon after [84]. Electrophysiological studies in both mutant

LGI1 and LGI1 null mice demonstrate increased synaptic

excitation [84, 85], thought to be mediated by increased

glutamate efflux [84]. LGI1 mutations in humans cause

autosomal dominant lateral temporal lobe epilepsy (AD-

LTE), with ictal auditory hallucinations [86]. Some

patients have generalised tonic–clonic seizures, sensory

aphasic seizures, and a few kindreds have ictal psychic

phenomena [87].

C1q

1. Internalisa�on

2. Complement 
fixa�on

PRESYNAPTIC

POST-
SYNAPTIC

VGKC or 
AMPAR C9 

neo 
and 
C3b

GLU

3. Direct effect on 
channel kine�cs

Ca2+

N
M
D
A
R

GLU

GLU

GLU

ADAM
22

LGI1

ADAM
22

ADAM
22

VGKC or 
AMPAR

LGI1

LGI1

NSAb

Fig. 4 Potential pathogenic mechanisms of neuronal surface-directed

antibodies (NSAbs). a Internalisation of receptors has been demon-

strated in vitro using NMDAR (N-methyl-D-aspartate receptor),

AMPAR (a-amino-3-hydroxy-5-methylisoxazole-4-propionic acid

receptor) and GABAAR (c-aminobutyric acid A receptor)-antibodies.

Here the LGI1–ADAM22 interaction is shown as a possible unit for

co-internalisation. b Antibody-mediated complement fixation and

complement-mediated membrane receptor disruption as seen with

antibodies against AQP4 (aquaporin-4). c Direct alteration of ion-

channel molecular function is an alternative mechanism
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Contrasts are stark between LGI1 human mutants and

the corresponding antibody-mediated syndromes. In

patients with LGI1 mutations, despite focal temporal lobe

seizures, there are no cognitive or psychiatric manifesta-

tions, seizure semiology is predominantly auditory, and

MRIs are normal. The opposites are true of patients with

FBDS- and LGI1-antibodies. These differences may be

accounted for by antibody access to only specific brain

regions, the effect of complement-mediated neuronal

damage, or genetic compensation in LGI1 mutants which

may not occur in a rapid onset antibody-mediated disorder.

Perhaps some effects of LGI1 mutations are via expression

or function of VGKCs. Indeed, humans with Kv1.1 muta-

tions have neuromyotonia and an increased rate of seizures

[88, 89].

CASPR2 mutants

Contactin-associated protein-2 null mice were originally

thought to have normal behaviour and neuronal growth

despite loss of K? channel juxtaparanode clustering [90].

More recent analyses have shown that they demonstrate

hyperlocomotion, repetitive and inflexible behaviours,

impaired socialising and seizures after 6 months of age [91].

The findings are reminiscent of those seen in autistic

spectrum disorders, and mutations/polymorphisms in the

CASPR2-encoding gene, CNTNAP2, have been linked to

autism [92]. Interestingly, a recessive non-coding mutation

for CNTNAP2 causes cortical dysplasia focal epilepsy

syndrome (CDFE), characterised by seizures, intellectual

disability, hyperactivity, and in two-thirds of cases, autism

[93]. Mutations in CNTNAP2 have also been linked to

schizophrenia, psychosis and other forms of epilepsy [94].

Therefore, there are clear similarities between patients with

CASPR2-antibodies and mutations in CASPR2.

Controversies, possible resolutions and new directions

Antibody levels and assay methodologies

Early in these illnesses, the levels of serum autoantibodies

are almost always higher than CSF autoantibodies. This

seems intuitive in patients with a peripheral tumour, such as

an ovarian teratoma, and also given patients positive clini-

cal responses after plasma exchange. Therefore, it seems

likely that reports of autoantibody detection in the CSF, but

not serum, are due to differences in assay methodologies.

One consideration is that the presence of intrathecal auto-

antibody synthesis, particularly seen with NMDAR-anti-

bodies, and the constitutively low total IgG levels in CSF

makes CSF easier to use than serum in diagnostic assays. As

differences between antibody-detection methods have been

discussed in detail elsewhere [31, 95, 96], here we sum-

marise the main areas of controversy.

Autoantibodies with pathogenic potential recognise the

extracellular domains of native membrane proteins. They

are very rarely detected in denaturing western blots.

However, assays utilised in the field do not always exclu-

sively detect these autoantibodies. For example, the use of

fixed tissue (where native epitopes may be destroyed) and

the use of permeabilised antigen-transfected cells to detect

antibodies may permit non-pathogenic autoantibody bind-

ing [8, 96]. Despite this possibility, the concurrent use of

live hippocampal neurons [4, 8] and techniques of antibody

absorption exclusively against the extracellular domain [4,

97] allay this concern [31]. In conclusion, differences

between current assays suggest that both CSF and serum

should be sent to laboratories whenever possible, and

future cross-laboratory comparative assays should help

understand the differences described above.

NSAbs in other neurological diseases and the healthy

population

In a recent study by Dahm et al., sera from over 4,000

healthy and disease controls with varied neuropsychiatric

presentations (including schizophrenia, ALS, Parkinson’s

and stroke) were screened for a panel of NSAbs and intra-

cellular-targeted antibodies.*11 % of the combined cohort

was found to be positive for IgM- (6 %), IgA- (5 %) and

IgG (1 %)-NMDAR-antibodies at titres from 1:10 to

1:1,000 with equal proportions in disease and healthy con-

trols. Other frequently detected antibodies were amphi-

physin (2.0 %), CASPR2 (0.9 %), MOG (0.8 %), GAD65

(0.5 %), Ma2 (0.5 %), Yo (0.4 %) and Ma1 (0.4 %), also

with similar frequencies in disease and healthy controls

[98]. The use of a permeabilised cell-based assay without

CSF testing may account for the lowered specificity.

However, as these antibodies appear to be present in healthy

controls, this study suggests that clinical syndrome classi-

fication remains key to defining disease-relevant autoanti-

bodies with pathogenic potential. Indeed, the lack of gold

standards for disease, independent of antibody positivity,

for research purposes is a problem for future studies.

IgA and IgM autoantibodies

Antibodies of the IgG class associate with all of the NSAb-

mediated diseases discussed thus far. There have, however,

been reports of IgA- and IgM-NMDAR-antibodies associ-

ated with slow cognitive impairment [99], psychosis and

bipolar disorder [100]. These IgM-NMDAR-antibodies

caused a reduction in cell survival and NR1 expression in

cultured rodent neurons [100], suggesting pathogenic

potential. One study suggested that 31 % of patients with

1090 J Neurol (2015) 262:1081–1095
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IgG-NMDAR-antibodies also had IgA-NMDAR-antibod-

ies [99].

Autoantibody triggers: tumours, infections

and neurodegeneration

As tumours often express the antigen of interest in para-

neoplastic NSAb-associated conditions, they are the likely

sites of antigen presentation. In addition, other paradigms

for breaking immune tolerance have arisen.

After herpes simplex virus encephalitis (HSVE), chil-

dren often suffer relapses which have recently been asso-

ciated with NMDAR-antibodies [101, 102]. Relapses

occurred a few weeks to months after the HSVE, pheno-

typically closely resemble classical NMDAR-antibody

encephalitis, and appear to be immunotherapy-responsive.

The NMDAR-antibodies were found alongside other novel

NSAbs and may represent systemic immunisation after

neuronal damage. Indeed in adults, generation of VGKC-

complex, glycine receptor and NMDAR-antibodies has

been observed in a small proportion (\5 %) of patients

with rapid neurodegeneration as seen in CJD [72, 103]. A

more elegant example of this is the observation that

VGKC-complex antibodies (amongst others) are generated

in abattoir workers after exposure to aerosolised porcine

neural tissue [104]. Furthermore, experimental rodents

exposed to inhaled brain tissue aerosol developed a similar

clinical and serological profile to their human counterparts

[105]. It is likely that these antibodies are secondary.

In summary, multiple triggers appear able to generate

serum autoantibodies with pathogenic potential. Factors

governing the antibody-pathogenicity may include their

access to the brain/CSF compartments, concentrations, the

duration of antibody production, and intrinsic individual

patient thresholds.

Conclusions

Neuroimmunology has moved on from its position

15 years ago where it principally reflected research into

multiple sclerosis and the pace of change and growth seems

set to continue. There are increasing numbers of NSAbs

associated with defined conditions. With the majority of

discoveries being recent, much work will be needed to

hone these phenotypes, their pathophysiological basis,

optimal treatments, prognosis and longer term manage-

ment. There are still methodological issues to settle, such

as the best way to test for NSAbs, the independent gold

standards for diagnosis of each condition and the relevance

of low antibody levels in patients with non-classical syn-

dromes. There are still antibodies to be found, for example

in the VGKC-antibody-positive patients without LGI1- and

CASPR2-antibodies. The underlying immunological

mechanisms remain only partly characterised and much

work will address this in coming years.

In the meantime, work must go on by the bedside, with

clinicians recognising signs which suggest an underlying

autoimmune condition and initiating the testing to detect an

antibody, novel or otherwise. Only with such collaboration

and high-quality clinical work can progress continue to be

made in the laboratory to reduce the impact of these often

devastating diseases.
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