522 research outputs found

    Tensor decomposition processes for interpolation of diffusion magnetic resonance imaging

    Get PDF
    Diffusion magnetic resonance imaging (dMRI) is an established medical technique used for describing water diffusion in an organic tissue. Typically, rank-2 or 2nd-order tensors quantify this diffusion. From this quantification, it is possible to calculate relevant scalar measures (i.e. fractional anisotropy) employed in the clinical diagnosis of neurological diseases. Nonetheless, 2nd-order tensors fail to represent complex tissue structures like crossing fibers. To overcome this limitation, several researchers proposed a diffusion representation with higher order tensors (HOT), specifically 4th and 6th orders. However, the current acquisition protocols of dMRI data allow images with a spatial resolution between 1 mm3 and 2 mm3, and this voxel size is much bigger than tissue structures. Therefore, several clinical procedures derived from dMRI may be inaccurate. Concerning this, interpolation has been used to enhance the resolution of dMRI in a tensorial space. Most interpolation methods are valid only for rank-2 tensors and a generalization for HOT data is missing. In this work, we propose a probabilistic framework for performing HOT data interpolation. In particular, we introduce two novel probabilistic models based on the Tucker and the canonical decompositions. We call our approaches: Tucker decomposition process (TDP) and canonical decomposition process (CDP). We test the TDP and CDP in rank-2, 4 and 6 HOT fields. For rank-2 tensors, we compare against direct interpolation, log-Euclidean approach, and Generalized Wishart processes. For rank-4 and 6 tensors, we compare against direct interpolation and raw dMRI interpolation. Results obtained show that TDP and CDP interpolate accurately the HOT fields in terms of Frobenius distance, anisotropy measurements, and fiber tracts. Besides, CDP and TDP can be generalized to any rank. Also, the proposed framework keeps the mandatory constraint of positive definite tensors, and preserves morphological properties such as fractional anisotropy (FA), generalized anisotropy (GA) and tractography

    Portion control tableware differentially impacts eating behaviour in women with and without overweight

    Get PDF
    Portion control tableware has been described as a potentially effective approach for weight management, however the mechanisms by which these tools work remain unknown. We explored the processes by which a portion control (calibrated) plate with visual stimuli for starch, protein and vegetable amounts modulates food intake, satiety and meal eating behaviour. Sixty-five women (34 with overweight/obesity) participated in a counterbalanced cross-over trial in the laboratory, where they self-served and ate a hot meal including rice, meatballs and vegetables, once with a calibrated plate and once with a conventional (control) plate. A subsample of 31 women provided blood samples to measure the cephalic phase response to the meal. Effects of plate type were tested through linear mixed-effect models. Meal portion sizes (mean ± SD) were smaller for the calibrated compared with the control plate (served: 296 ± 69 vs 317 ± 78 g; consumed: 287 ± 71 vs 309 ± 79 g respectively), especially consumed rice (69 ± 24 vs 88 ± 30 g) (p < 0.05 for all comparisons). The calibrated plate significantly reduced bite size (3.4 ± 1.0 vs 3.7 ± 1.0 g; p < 0.01) in all women and eating rate (32.9 ± 9.5 vs 33.7 ± 9.2 g/min; p < 0.05), in lean women. Despite this, some women compensated for the reduced intake over the 8 h following the meal. Pancreatic polypeptide and ghrelin levels increased post-prandially with the calibrated plate but changes were not robust. Plate type had no influence on insulin, glucose levels, or memory for portion size. Meal size was reduced by a portion control plate with visual stimuli for appropriate amounts of starch, protein and vegetables, potentially because of the reduced self-served portion size and the resulting reduced bite size. Sustained effects may require the continued use of the plate for long-term impact

    Development and validation of a new methodological platform to measure behavioral, cognitive, and physiological responses to food interventions in real time

    Get PDF
    To fully understand the causes and mechanisms involved in overeating and obesity, measures of both cognitive and physiological determinants of eating behavior need to be integrated. Effectively synchronizing behavioral measures such as meal micro-structure (e.g., eating speed), cognitive processing of sensory stimuli, and metabolic parameters, can be complex. However, this step is central to understanding the impact of food interventions on body weight. In this paper, we provide an overview of the existing gaps in eating behavior research and describe the development and validation of a new methodological platform to address some of these issues. As part of a controlled trial, 76 men and women self-served and consumed food from a buffet, using a portion-control plate with visual stimuli for appropriate amounts of main food groups, or a conventional plate, on two different days, in a random order. In both sessions participants completed behavioral and cognitive tests using a novel methodological platform that measured gaze movement (as a proxy for visual attention), eating rate and bite size, memory for portion sizes, subjective appetite and portion-size perceptions. In a sub-sample of women, hormonal secretion in response to the meal was also measured. The novel platform showed a significant improvement in meal micro-structure measures from published data (13 vs. 33% failure rate) and high comparability between an automated gaze mapping protocol vs. manual coding for eye-tracking studies involving an eating test (ICC between methods 0.85; 90% CI 0.74, 0.92). This trial was registered at Clinical Trials.gov with Identifier NCT03610776

    Patterns of psychological responses among the public during the early phase of COVID-19: A cross-regional analysis

    Get PDF
    This study aimed to compare the mediation of psychological flexibility, prosociality and coping in the impacts of illness perceptions toward COVID-19 on mental health among seven regions. Convenience sampled online survey was conducted between April and June 2020 from 9130 citizens in 21 countries. Illness perceptions toward COVID-19, psychological flexibility, prosociality, coping and mental health, socio-demographics, lockdown-related variables and COVID-19 status were assessed. Results showed that psychological flexibility was the only significant mediator in the relationship between illness perceptions toward COVID-19 and mental health across all regions (all ps = 0.001–0.021). Seeking social support was the significant mediator across subgroups (all ps range = <0.001–0.005) except from the Hong Kong sample (p = 0.06) and the North and South American sample (p = 0.53). No mediation was found for problem-solving (except from the Northern European sample, p = 0.009). Prosociality was the significant mediator in the Hong Kong sample (p =0.016) and the Eastern European sample (p = 0.008). These findings indicate that fostering psychological flexibility may help to mitigate the adverse mental impacts of COVID-19 across regions. Roles of seeking social support, problem-solving and prosociality vary across regions. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Mental health and adherence to covid-19 protective behaviors among cancer patients during the covid-19 pandemic: An international, multinational cross-sectional study

    Get PDF
    A population-based cross-sectional study was conducted during the first COVID-19 wave, to examine the impact of COVID-19 on mental health using an anonymous online survey, enrolling 9565 individuals in 78 countries. The current sub-study examined the impact of the pandemic and the associated lockdown measures on the mental health, and protective behaviors of cancer patients in comparison to non-cancer participants. Furthermore, 264 participants from 30 different countries reported being cancer patients. The median age was 51.5 years, 79.9% were female, and 28% had breast cancer. Cancer participants reported higher self-efficacy to follow recommended national guidelines regarding COVID-19 protective behaviors compared to non-cancer participants (p < 0.01). They were less stressed (p < 0.01), more psychologically flexible (p < 0.01), and had higher levels of positive affect compared to non-cancer participants. Amongst cancer participants, the majority (80.3%) reported COVID-19, not their cancer, as their priority during the first wave of the pandemic and females reported higher levels of stress compared to males. In conclusion, cancer participants appeared to have handled the unpredictable nature of the first wave of the pandemic efficiently, with a positive attitude towards an unknown and otherwise frightening situation. Larger, cancer population specific and longitudinal studies are warranted to ensure adequate medical and psychological care for cancer patients. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Evidence for a mixed mass composition at the `ankle' in the cosmic-ray spectrum

    Get PDF
    We report a first measurement for ultra-high energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the `ankle' at lg(E/eV)=18.519.0\lg(E/{\rm eV})=18.5-19.0 differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass A>4A > 4. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth.Comment: Published version. Added journal reference and DOI. Added Report Numbe

    The exposure of the hybrid detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The "hybrid" detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic

    Milagro limits and HAWC sensitivity for the rate-density of evaporating Primordial Black Holes

    Get PDF
    postprin

    Reconstruction of events recorded with the surface detector of the Pierre Auger Observatory

    Get PDF
    Cosmic rays arriving at Earth collide with the upper parts of the atmosphere, thereby inducing extensive air showers. When secondary particles from the cascade arrive at the ground, they are measured by surface detector arrays. We describe the methods applied to the measurements of the surface detector of the Pierre Auger Observatory to reconstruct events with zenith angles less than 60o using the timing and signal information recorded using the water-Cherenkov detector stations. In addition, we assess the accuracy of these methods in reconstructing the arrival directions of the primary cosmic ray particles and the sizes of the induced showers

    Astrophysical Interpretation Of Pierre Auger Observatory Measurements Of The Uhecr Energy Spectrum And Mass Composition

    Get PDF
    13
    corecore