12 research outputs found

    Holocene demographic fluctuations, climate and erosion in the Mediterranean: A meta data-analysis

    Get PDF
    As part of the Changing the Face of the Mediterranean Project, we consider how human pressure and concomitant erosion has affected a range of Mediterranean landscapes between the Neolithic and, in some cases, the post-medieval period. Part of this assessment comprises an investigation of relationships among palaeodemographic data, evidence for vegetation change and some consideration of rapid climate change events. The erosion data include recent or hitherto unpublished work from the authors. Where possible, we consider summed probabilities of 14C dates as well as the first published synthesis of all known optically stimulated luminescence dated sequences. The results suggest that while there were some periods when erosion took place contemporaneously across a number of regions, possibly induced by climate changes, more often than not, we see a complex and heterogeneous interplay of demographic and environmental changes that result in a mixed pattern of erosional activity across the Mediterranean

    Fire and ice: a comparison of interglacial fire activity within the MPI-ESM and ice core proxies

    No full text
    One of the controlling factors of net ecosystem exchange that is highly sensitive to changes in climate is fire activity. A model study to describe these controlling factors is validated using multiple proxies to understand fire activity on a continental scale. We present results form a transient integration with the fully coupled Earth System Model (ESM) ECHAM5/MPI-OM1/JSBACH of the Max-Planck-Institute for Meteorology covering the last 6000 years. The model comprises dynamical components for atmosphere, ocean, and biosphere including an approach to simulate fire dynamics. The simulation is analyzed with a focus on land carbon and fire dynamics. A range of observational products are used to constrain the models ability to simulate fire distribution and changes in fire regimes over the course of the last 6000 years. On the global land scale, the model run shows a small decrease of the global mean temperature and a decline in annual precipitation. For the land carbon storage there is a significant decrease. Due to the changes in the orbital parameters with time, regionally the effect on precipitation and temperature is stronger, which results in a shift of the tropical rain belt combined with changes in vegetation. Striking is for example a reduction in the vegetation cover in central East Asia over the last 6000 years with a subsequent decreasing trend in land carbon. Related to climatic changes the fire activity is changing as well. We simulate a reduction of 5% in annual global burned area within the last 6000 years. Regionally, the simulation points out trends in the fire activity corresponding to the changes in vegetation shifts: e.g. there is an increase of 15% in central East Asia and a reduction of about 20% in tropical West Africa in burned area mainly a result of the redistribution of fuel abundance. Simulated changes in fire activity are compared to fire activity records reported in the global charcoal database (Power et al., 2008) and levoglucosan values out of ice cores. As the charcoal data and levoglucosan data show opposite trends, we demonstrate the sensitivity of the modeled and observed trend to the chosen grid boxes of the model domain. Whereas the charcoal sites are biased to North-America and show an opposite trend than the ice-core data from Kilimanjaro, the investigation of levoglucosan data out of remote ice cores (EPICA or NEEM) are additional used to get a global view on the trend in fire activity

    Global biomass burning: a synthesis and review of Holocene paleofire records and their controls.

    No full text
    We synthesize existing sedimentary charcoal records to reconstruct Holocene fire history at regional, continental and global scales. The reconstructions are compared with the two potential controls of burning at these broad scales – changes in climate and human activities – to assess their relative importance on trends in biomass burning. Here we consider several hypotheses that have been advanced to explain the Holocene record of fire, including climate, human activities and synergies between the two. Our results suggest that 1) episodes of high fire activity were relatively common in the early Holocene and were consistent with climate changes despite low global temperatures and low levels of biomass burning globally; 2) there is little evidence from the paleofire record to support the Early Anthropocene Hypothesis of human modification of the global carbon cycle; 3) there was a nearly-global increase in fire activity from 3 to 2 ka that is difficult to explain with either climate or humans, but the widespread and synchronous nature of the increase suggests at least a partial climate forcing; and 4) burning during the past century generally decreased but was spatially variable; it declined sharply in many areas, but there were also large increases (e.g., Australia and parts of Europe). Our analysis does not exclude an important role for human activities on global biomass burning during the Holocene, but instead provides evidence for a pervasive influence of climate across multiple spatial and temporal scales

    Global Modern Charcoal Dataset (GMCD):a tool for exploring proxy-fire linkages and spatial patterns of biomass burning

    No full text
    Progresses in reconstructing Earth's history of biomass burning has motivated the development of a modern charcoal dataset covering the last decades through a community-based initiative called the Global Modern Charcoal Dataset (GMCD). As the frequency, intensity and spatial scale of fires are predicted to increase regionally and globally in conjunction with changing climate, anthropogenic activities and land-use patterns, there is an increasing need to further understand, calibrate and interrogate recent and past fire regimes as related to changing fire emissions and changing carbon sources and sinks. Discussions at the PAGES Global Paleofire Working Group workshop 2015, including paleoecologists, numerical modelers, statisticians, paleochmatologists, archeologists, and anthropologists, identified an urgent need for an open, standardized, quality-controlled and globally representative dataset of modern sedimentary charcoal and other sediment-based fire proxies. This dataset fits into a gap between metrics of biomass burning indicators, current fire regimes and land cover, and carbon emissions inventories. The dataset will enable the calibration of paleofire data with other modern datasets including: data of satellite derived fire occurrence, vegetation patterns and species diversity, land cover change, and a range of sources capturing biochemical cycling. Standardized protocols are presented for collecting and analyzing sediment-based fire proxies, including charcoal, levoglucosan, black carbon, and soot. The GMCD will provide a publically-accessible repository of modern fire sediment surface samples in all terrestrial ecosystems. Sample collection and contributions to the dataset will be solicited from lacustrine, peat, marine, glacial, or other sediments, from a wide variety of ecosystems and geographic locations. (C) 2017 Elsevier Ltd and INQUA. All rights reserved.</p
    corecore