153 research outputs found

    Development of anthracycline-induced dilated cardiomyopathy due to mutation on LMNA gene in a breast cancer patient: a case report

    Get PDF
    Background Anthracyclines are highly effective anticancer medication prescribed for the treatment of breast cancer. Nevertheless, the use of anthracyclines as chemotherapeutic agents involves a risk for development of cardiac toxicity which may cause restrictive and dilated cardiomyopathy. Currently, genetic predisposition is not considered as a risk factor for cardiotoxicity associated to the use of anthracyclines. Case presentation We report the case of a 37-years old Panamanian female patient diagnosed with breast cancer who developed clinical signs of severe heart failure after treatment with doxorubicin. A diagnosis of anthracycline induced cardiomyopathy was made and treatment was initiated accordingly. A whole exome sequencing study performed to the patient showed the presence of a missense mutation in LMNA gene, which codifies for lamin A/C. Our results points to a correlation between the LMNA variant and the anthracycline cardiotoxicity developed by the woman. Improvement of the clinical symptoms and the left ventricle ejection fraction was observed after proper treatment. Conclusions This case report suggests for the first time a potential genetic predisposition for anthracyclines induced cardiomyopathy in patients with mutations in LMNA gene. Perhaps chemotherapies accelerate or deliver the “second-hit” in the development of DCM in patients with genetic mutations. More data is needed to understand the contribution of LMNA variants that predispose to DCM in patients receiving cardiotoxic therapies.Background Anthracyclines are highly effective anticancer medication prescribed for the treatment of breast cancer. Nevertheless, the use of anthracyclines as chemotherapeutic agents involves a risk for development of cardiac toxicity which may cause restrictive and dilated cardiomyopathy. Currently, genetic predisposition is not considered as a risk factor for cardiotoxicity associated to the use of anthracyclines. Case presentation We report the case of a 37-years old Panamanian female patient diagnosed with breast cancer who developed clinical signs of severe heart failure after treatment with doxorubicin. A diagnosis of anthracycline induced cardiomyopathy was made and treatment was initiated accordingly. A whole exome sequencing study performed to the patient showed the presence of a missense mutation in LMNA gene, which codifies for lamin A/C. Our results points to a correlation between the LMNA variant and the anthracycline cardiotoxicity developed by the woman. Improvement of the clinical symptoms and the left ventricle ejection fraction was observed after proper treatment. Conclusions This case report suggests for the first time a potential genetic predisposition for anthracyclines induced cardiomyopathy in patients with mutations in LMNA gene. Perhaps chemotherapies accelerate or deliver the “second-hit” in the development of DCM in patients with genetic mutations. More data is needed to understand the contribution of LMNA variants that predispose to DCM in patients receiving cardiotoxic therapies

    Whole-genome sequencing to determine origin of multinational outbreak of Sarocladium kiliense bloodstream infections

    Get PDF
    We used whole-genome sequence typing (WGST) to investigate an outbreak of Sarocladium kiliense bloodstream infections (BSI) associated with receipt of contaminated antinausea medication among oncology patients in Colombia and Chile during 2013-2014. Twenty-five outbreak isolates (18 from patients and 7 from medication vials) and 11 control isolates unrelated to this outbreak were subjected to WGST to elucidate a source of infection. All outbreak isolates were nearly indistinguishable (≤5 single-nucleotide polymorphisms), and >21,000 single-nucleotide polymorphisms were identified from unrelated control isolates, suggesting a point source for this outbreak. S. kiliense has been previously implicated in healthcare-related infections; however, the lack of available typing methods has precluded the ability to substantiate point sources. WGST for outbreak investigation caused by eukaryotic pathogens without reference genomes or existing genotyping methods enables accurate source identification to guide implementation of appropriate control and prevention measures. © 2016, Centers for Disease Control and Prevention (CDC). All rights reserved

    An integrated expression phenotype mapping approach defines common variants in LEP, ALOX15 and CAPNS1 associated with induction of IL-6

    Get PDF
    Interleukin-6 (IL-6) is an important modulator of inflammation and immunity whose dysregulation is associated with a number of disease states. There is evidence of significant heritability in inter-individual variation in IL6 gene expression but the genetic variants responsible for this remain to be defined. We adopted a combined approach of mapping protein and expression quantitative trait loci in peripheral blood mononuclear cells using high-density single-nucleotide polymorphism (SNP) typing for ∼2000 loci implicated in cardiovascular, metabolic and inflammatory syndromes to show that common SNP markers and haplotypes of LEP (encoding leptin) associate with a 1.7- to 2-fold higher level of lipopolysaccharide (LPS)-induced IL-6 expression. We subsequently demonstrate that basal leptin expression significantly correlates with LPS-induced IL-6 expression and that the same variants at LEP which associate with IL-6 expression are also major determinants of leptin expression in these cells. We find that variation involving two other genomic regions, CAPNS1 (encoding calpain small subunit 1) and ALOX15 (encoding arachidonate 15-lipoxygenase), show significant association with IL-6 expression. Although this may be a subset of all such trans-acting effects, we find that the same ALOX15 variants are associated with induced expression of tumour necrosis factor and IL-1beta consistent with a broader role in acute inflammation for ALOX15. This study provides evidence of novel genetic determinants of IL-6 production with implications for understanding susceptibility to inflammatory disease processes and insight into cross talk between metabolic and inflammatory pathways. It also provides proof of concept for use of an integrated expression phenotype mapping approach

    DC-SIGN (CD209) gene promoter polymorphisms in a Brazilian population and their association with human T-cell lymphotropic virus type 1 infection

    Get PDF
    This study evaluated four polymorphisms located in the DC-SIGN (CD209) gene promoter region (positions −336, −332 −201 and −139) in DNA samples from four Brazilian ethnic groups (Caucasians, Afro-Brazilian, Asians and Amerindians) to establish the population distribution of these single-nucleotide polymorphisms (SNPs) and correlated DC-SIGN polymorphisms and infection in samples from human T-cell lymphotropic virus type 1 (HTLV-1)-infected individuals. To identify CD209 SNPs, 452 bp of the CD209 promoter region were sequenced and the genotype and allelic frequencies were evaluated. This is the first study to show genetic polymorphism in the CD209 gene in distinct Brazilian ethnic groups with the distribution of allelic and genotypic frequency. The results showed that −336A and −139A SNPs were quite common in Asians and that the −201T allele was not observed in Caucasians, Asians or Amerindians. No significant differences were observed between individuals with HTLV-1 disease and asymptomatic patients. However, the −336A variant was more frequent in HTLV-1-infected patients [HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), 80 %; healthy asymptomatic HTLV-1 carriers, 90 %] than in the control group (70 %) [P=0.0197, odds ratio (OR)=2.511, 95 % confidence interval (CI)=1.218–5.179). In addition, the −139A allele was found to be associated with protection against HTLV-1 infection (P=0.0037, OR=0.3758, 95 % CI=0.1954–0.7229) when the HTLV-1-infected patients as a whole were compared with the healthy-control group. These observations suggest that the −139A allele may be associated with HTLV-1 infection, although no significant association was observed among asymptomatic and HAM/TSP patients. In conclusion, the variation observed in SNPs −336 and −139 indicates that this lectin may be of crucial importance in the susceptibility/transmission of HTLV-1 infections

    Mannose-binding lectin genotypes: lack of association with susceptibility to thoracic empyema

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The role of the innate immune protein mannose-binding lectin (MBL) in host defence against severe respiratory infection remains controversial. Thoracic empyema is a suppurative lung infection that arises as a major complication of pneumonia and is associated with a significant mortality. Although the pathogenesis of thoracic empyema is poorly understood, genetic susceptibility loci for this condition have recently been identified. The possible role of MBL genotypic deficiency in susceptibility to thoracic empyema has not previously been reported.</p> <p>Methods</p> <p>To investigate this further we compared the frequencies of the six functional <it>MBL </it>polymorphisms in 170 European individuals with thoracic empyema and 225 healthy control individuals.</p> <p>Results</p> <p>No overall association was observed between MBL genotypic deficiency and susceptibility to thoracic empyema (2 × 2 Chi square = 0.02, <it>P </it>= 0.87). Furthermore, no association was seen between MBL deficiency and susceptibility to the Gram-positive or pneumococcal empyema subgroups. MBL genotypic deficiency did not associate with progression to death or requirement for surgery.</p> <p>Conclusions</p> <p>Our results suggest that MBL genotypic deficiency does not associate with susceptibility to thoracic empyema in humans.</p

    Association Study of Common Genetic Variants and HIV- 1 Acquisition in 6,300 Infected Cases and 7,200 Controls

    Get PDF
    Multiple genome-wide association studies (GWAS) have been performed in HIV-1 infected individuals, identifying common genetic influences on viral control and disease course. Similarly, common genetic correlates of acquisition of HIV-1 after exposure have been interrogated using GWAS, although in generally small samples. Under the auspices of the International Collaboration for the Genomics of HIV, we have combined the genome-wide single nucleotide polymorphism (SNP) data collected by 25 cohorts, studies, or institutions on HIV-1 infected individuals and compared them to carefully matched population-level data sets (a list of all collaborators appears in Note S1 in Text S1). After imputation using the 1,000 Genomes Project reference panel, we tested approximately 8 million common DNA variants (SNPs and indels) for association with HIV-1 acquisition in 6,334 infected patients and 7,247 population samples of European ancestry. Initial association testing identified the SNP rs4418214, the C allele of which is known to tag the HLA-B*57:01 and B*27:05 alleles, as genome-wide significant (p = 3.6×10−11). However, restricting analysis to individuals with a known date of seroconversion suggested that this association was due to the frailty bias in studies of lethal diseases. Further analyses including testing recessive genetic models, testing for bulk effects of non-genome-wide significant variants, stratifying by sexual or parenteral transmission risk and testing previously reported associations showed no evidence for genetic influence on HIV-1 acquisition (with the exception ofCCR5Δ32 homozygosity). Thus, these data suggest that genetic influences on HIV acquisition are either rare or have smaller effects than can be detected by this sample size

    CD209 Genetic Polymorphism and Tuberculosis Disease

    Get PDF
    BACKGROUND: Tuberculosis causes significant morbidity and mortality worldwide, especially in sub-Saharan Africa. DC-SIGN, encoded by CD209, is a receptor capable of binding and internalizing Mycobacterium tuberculosis. Previous studies have reported that the CD209 promoter single nucleotide polymorphism (SNP)-336A/G exerts an effect on CD209 expression and is associated with human susceptibility to dengue, HIV-1 and tuberculosis in humans. The present study investigates the role of the CD209 -336A/G variant in susceptibility to tuberculosis in a large sample of individuals from sub-Saharan Africa. METHODS AND FINDINGS: A total of 2,176 individuals enrolled in tuberculosis case-control studies from four sub-Saharan Africa countries were genotyped for the CD209 -336A/G SNP (rs4804803). Significant overall protection against pulmonary tuberculosis was observed with the -336G allele when the study groups were combined (n = 914 controls vs. 1262 cases, Mantel-Haenszel 2 x 2 chi(2) = 7.47, P = 0.006, odds ratio = 0.86, 95%CI 0.77-0.96). In addition, the patients with -336GG were associated with a decreased risk of cavitory tuberculosis, a severe form of tuberculosis disease (n = 557, Pearson's 2x2 chi(2) = 17.34, P = 0.00003, odds ratio = 0.42, 95%CI 0.27-0.65). This direction of association is opposite to a previously observed result in a smaller study of susceptibility to tuberculosis in a South African Coloured population, but entirely in keeping with the previously observed protective effect of the -336G allele. CONCLUSION: This study finds that the CD209 -336G variant allele is associated with significant protection against tuberculosis in individuals from sub-Saharan Africa and, furthermore, cases with -336GG were significantly less likely to develop tuberculosis-induced lung cavitation. Previous in vitro work demonstrated that the promoter variant -336G allele causes down-regulation of CD209 mRNA expression. Our present work suggests that decreased levels of the DC-SIGN receptor may therefore be protective against both clinical tuberculosis in general and cavitory tuberculosis disease in particular. This is consistent with evidence that Mycobacteria can utilize DC-SIGN binding to suppress the protective pro-inflammatory immune response

    A genome-wide association study of anorexia nervosa.

    Get PDF
    Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome-wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2907 cases with AN from 14 countries (15 sites) and 14 860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery data sets. Seventy-six (72 independent) single nucleotide polymorphisms were taken forward for in silico (two data sets) or de novo (13 data sets) replication genotyping in 2677 independent AN cases and 8629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication data sets comprised 5551 AN cases and 21 080 controls. AN subtype analyses (1606 AN restricting; 1445 AN binge-purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01 × 10(-7)) in SOX2OT and rs17030795 (P=5.84 × 10(-6)) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76 × 10(-)(6)) between CUL3 and FAM124B and rs1886797 (P=8.05 × 10(-)(6)) near SPATA13. Comparing discovery with replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P=4 × 10(-6)), strongly suggesting that true findings exist but our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field

    Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A

    Get PDF
    The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1-3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods - recursive partitioning and regression - to pinpoint disease susceptibility to the MHC class I genes HLA-B and HLA-A (risk ratios >1.5; Pcombined = 2.01 × 10-19 and 2.35 × 10-13, respectively) in addition to the established associations of the MHC class II genes. Other loci with smaller and/or rarer effects might also be involved, but to find these, future searches must take into account both the HLA class II and class I genes and use even larger samples. Taken together with previous studies, we conclude that MHC-class-I-mediated events, principally involving HLA-B*39, contribute to the aetiology of type 1 diabetes. ©2007 Nature Publishing Group

    Innate signaling by the C-type lectin DC-SIGN dictates immune responses

    Get PDF
    Effective immune responses depend on the recognition of pathogens by dendritic cells (DCs) through pattern recognition receptors (PRRs). These receptors induce specific signaling pathways that lead to the induction of immune responses against the pathogens. It is becoming evident that C-type lectins are also important PRRs. In particular, the C-type lectin DC-SIGN has emerged as a key player in the induction of immune responses against numerous pathogens by modulating TLR-induced activation. Recent reports have begun to elucidate the molecular mechanisms underlying these immune responses. Upon pathogen binding, DC-SIGN induces an intracellular signaling pathway with a central role for the serine/threonine kinase Raf-1. For several pathogens that interact with DC-SIGN, including Mycobacterium tuberculosis and HIV-1, Raf-1 activation leads to acetylation of NF-kappa B subunit p65, which induces specific gene transcription profiles. In addition, other DC-SIGN-ligands induce different signaling pathways downstream of Raf-1, indicating that DC-SIGN-signaling is tailored to the pathogen. In this review we will discuss in detail the current knowledge about DC-SIGN signaling and its implications on immunit
    corecore