16 research outputs found

    Saturation dependence of the streaming potential coefficient

    No full text
    International audienceObservations of streaming potential for unsaturated conditions do not always show the same trend depending on the hydrodynamic conditions and because of a lake of coherency between the data processing procedures. We combine the data from three studies published in the literature, acquired during non-steady state drainage experiments, and apply the same processing steps. We model the hydrodynamic behaviour of these experiments to confirm that they experienced different flow dynamics. We argue that the raw SP data should not be corrected unless a clear drift of the electrodes stability is observed. The combined hydrodynamic behaviour and the streaming potential response show that (a) the observations of one of the experiment (exp #1) are associated to a limited range of water saturation (0.85-1). The corresponding signals could 16 therefore be fairly modelled assuming no saturation dependence of the SPC whatsoever; (b) the observations of exp #3 led to a SPC that can be larger than its value at saturation; (c) the observations of the exp #2 show a non-monotonous behaviour of the SPC as saturation decreases. The underlying physics of a non-monotonous SPC is related to water/air interfaces as shown by the results of the lattice Boltzmann numerical simulations. The main contribution to the SPC behaviour comes from the charged water/air interfaces and depends on the dynamic state of moving or entrapped bubbles. We finally describe the consequences of such a behaviour on the seismoelectric conversions for unsaturated conditions

    A microbiological and biogeochemical investigation of the cold seep tubeworm Escarpia southwardae (Annelida: Siboglinidae): Symbiosis and trace element composition of the tube

    No full text
    Tubeworms within the annelid family Siboglinidae rely on sulfur-oxidizing autotrophic bacterial symbionts for their nutrition, and are among the dominant metazoans occurring at deep-sea hydrocarbon seeps. Contrary to their relatives from hydrothermal vents, sulfide uptake for symbionts occurs within the anoxic subsurface sediment, in the posterior ‘root’ region of the animal. This study reports on an integrated microbiological and geochemical investigation of the cold seep tubeworm Escarpia southwardae collected at the Regab pockmark (Gulf of Guinea). Our aim was to further constrain the links between the animal and its symbiotic bacteria, and their environment. We show that E. southwardae harbors abundant sulfur-oxidizing bacterial symbionts in its trophosome. Symbionts are able to fix inorganic carbon using the Calvin-Benson cycle, as reported in most other Siboglinidae, but can also use the reverse Tricarboxilic Acid Cycle. Surprisingly, the observed bacteria appear to be more closely related to symbionts of Escarpia and Lamellibrachia species from very distant sites located in the Gulf of Mexico and eastern Pacific, than to symbionts of a siboglinid occurring at a nearby methane seep site, only a few hundred km away from Regab. Then, by combining scanning electron microscopy and trace element (Mn, Fe, Sr, Zr) analyses of E. southwardae tube, we also show that two distinct oxidation fronts occur along the tube. The first one, near the posterior end of the tube, corresponds to the interface between oxic bottom waters and the underlying anoxic sediment. In contrast, the second redox front is located in the most anterior part of the tube, and could result from active oxygen uptake by the plume of the tubeworm. We speculate that intense oxygen consumption in this region could create favorable conditions for sulfate reduction by specialized bacteria associated with the plume, possibly leading to an additional source of dissolved sulfide that would further enhance the productivity of bacterial symbionts
    corecore