25 research outputs found

    The distribution of pond snail communities across a landscape: separating out the influence of spatial position from local habitat quality for ponds in south-east Northumberland, UK

    Get PDF
    Ponds support a rich biodiversity because the heterogeneity of individual ponds creates, at the landscape scale, a diversity of habitats for wildlife. The distribution of pond animals and plants will be influenced by both the local conditions within a pond and the spatial distribution of ponds across the landscape. Separating out the local from the spatial is difficult because the two are often linked. Pond snails are likely to be affected by both local conditions, e.g. water hardness, and spatial patterns, e.g. distance between ponds, but studies of snail communities struggle distinguishing between the two. In this study, communities of snails were recorded from 52 ponds in a biogeographically coherent landscape in north-east England. The distribution of snail communities was compared to local environments characterised by the macrophyte communities within each pond and to the spatial pattern of ponds throughout the landscape. Mantel tests were used to partial out the local versus the landscape respective influences. Snail communities became more similar in ponds that were closer together and in ponds with similar macrophyte communities as both the local and the landscape scale were important for this group of animals. Data were collected from several types of ponds, including those created on nature reserves specifically for wildlife, old field ponds (at least 150 years old) primarily created for watering livestock and subsidence ponds outside protected areas or amongst coastal dunes. No one pond type supported all the species. Larger, deeper ponds on nature reserves had the highest numbers of species within individual ponds but shallow, temporary sites on farm land supported a distinct temporary water fauna. The conservation of pond snails in this region requires a diversity of pond types rather than one idealised type and ponds scattered throughout the area at a variety of sites, not just concentrated on nature reserves

    Isolation of the LEMMI9 gene and promoter analysis during a compatible plant-nematode interaction

    No full text
    Plant-endoparasitic root-knot nematodes feed on specialized giant cells that they induce in the vascular cylinder of susceptible plants. Although it has been established that a number of plant genes change their expression pattern during giant cell differentiation, virtually no data are available about the mechanisms involved in that change. One possibility is differential promoter recognition by the transcription factor(s) responsible for the expression of specific genes. We have isolated and characterized a genomic clone from tomato containing the promoter region of LEMMI9, one of the few plant genes that have been reported to be highly expressed in galls (predominantly in giant cells). The analysis of transgenic potato plants carrying a LEMMI9 promoter-a glucuronidase (GUS) fusion has demonstrated that the tomato promoter was activated in Meloidogyne incognita-induced galls in a heterologous system. We have located putative regulatory sequences in the promoter and have found that nuclear proteins from the galls formed specific DNA-protein complexes with the proximal region of the LEMMI9 promoter, The nuclear protein-binding sequence mapped to a region of 111 bp immediately upstream from the TATA box, This region contains a 12-bp repeat possibly involved in the formation of DNA-protein complexes, which might be related to the LEMMI9 transcriptional activation in the giant cells

    How did this snail get here? Several dispersal vectors inferred for an aquatic invasive species

    Get PDF
    How species reach and persist in isolated habitats remains an open question in many cases, especially for rapidly spreading invasive species. This is particularly true for temporary freshwater ponds, which can be remote and may dry out annually, but may still harbour high biodiversity. Persistence in such habitats depends on recurrent colonisation or species survival capacity, and ponds therefore provide an ideal system to investigate dispersal and connectivity. 2. Here, we test the hypothesis that the wide distributions and invasive potential of aquatic snails is due to their ability to exploit several dispersal vectors in different landscapes. We explored the population structure of Physa acuta (recent synonyms: Haitia acuta, Physella acuta, Pulmonata: Gastropoda), an invasive aquatic snail originating from North America, but established in temporary ponds in Donana National Park, southern Spain. In this area, snails face land barriers when attempting to colonise other suitable habitat. 3. Genetic analyses using six microsatellite loci from 271 snails in 21 sites indicated that (i) geographically and hydrologically isolated snail populations in the park were genetically similar to a large snail population in rice fields more than 15 km away; (ii) these isolated ponds showed an isolation-by-distance pattern. This pattern broke down, however, for those ponds visited frequently by large mammals such as cattle, deer and wild boar; (iii) snail populations were panmictic in flooded and hydrologically connected rice fields. 4. These results support the notion that aquatic snails disperse readily by direct water connections in the flooded rice fields, can be carried by waterbirds flying between the rice fields and the park and may disperse between ponds within the park by attaching to large mammals. 5. The potential for aquatic snails such as Physa acuta to exploit several dispersal vectors may contribute to their wide distribution on various continents and their success as invasive species. We suggest that the interaction between different dispersal vectors, their relation to specific habitats and consequences at different geographic scales should be considered both when attempting to control invasive freshwater species and when protecting endangered species.

    Faunistical overview of the European species of the genera Brachyopa Meigen, 1822 and Hammerschmidtia Schummel, 1834 (Diptera: Syrphidae)

    No full text
    The European fauna of the genera Brachyopa Meigen, 1822 and Hammerschmidtia Schummel, 1834 is reviewed. The distribution and phenology based on extensive literature and database research are provided. The biology of adults as well as larval habitats are treated. An illustrated key is presented for easy identification of the adults, including three species known from adjacent Mediterranean countries. A key to the larvae, based on the available literature, is also provided. The data originate from a study of available literature, from several databases and from the private collections of the authors. The data are compiled into one large dataset in which all the available information is gathered together with the source of the data. Based on the biology and trend analysis for each species it is indicated whether they show stable, fluctuating or extremely fluctuating populations. The habitat preferences of the adults and larvae are used to discuss possible threats to each of the species for future survival. Finally, the main habitat of all species is discussed from a conservation point of vie

    The relative importance of dispersal and local processes in structuring phytoplankton communities in a set of highly interconnected ponds

    No full text
    1. The recognition that both local and regional processes act together in shaping local communities makes determining their relative roles in natural communities central to understanding patterns in community structure. 2. We investigated the relative influence of these processes on the phytoplankton communities of a highly interconnected pond system. We sampled the phytoplankton communities of 28 ponds concurrently with 20 local environmental variables. 3. We found that phytoplankton community variation, in terms of both phytoplankton community composition (PCC) and diversity, was only significantly explained by local environmental variables. These were mainly associated with the contrasting clear-water and turbid ecological states of the shallow ponds studied. Clear-water conditions favoured only a few taxa, resulting in a significantly lower taxon diversity and richness under these conditions. 4. The failure to explain variation in PCC by a dispersal model based on the water flow between ponds points at very effective species sorting. This is attributed to the high population turn-over rates and sensitivity to environmental conditions of phytoplankton communities. Some evidence was found, however, that dispersal influences local communities through mass effects between neighbouring ponds. 5. Overall, our results emphasize both the strong selection pressure that components of the food web exert on phytoplankton communities and the high potential of these communities to respond to such environmental change, thereby effectively opposing the homogenizing effects of continuous dispersal
    corecore