74 research outputs found

    Recent warming trends of the Greenland ice sheet documented by historical firn and ice temperature observations and machine learning

    Get PDF
    Surface melt on the Greenland ice sheet has been increasing in intensity and extent over the last decades due to Arctic atmospheric warming. Surface melt depends on the surface energy balance, which includes the atmospheric forcing but also the thermal budget of the snow, firn and ice near the ice sheet surface. The temperature of the ice sheet subsurface has been used as an indicator of the thermal state of the ice sheet's surface. Here, we present a compilation of 4612 measurements of firn and ice temperature at 10 m below the surface (T10 m) across the ice sheet, spanning from 1912 to 2022. The measurements are either instantaneous or monthly averages. We train an artificial neural network model (ANN) on 4597 of these point observations, weighted by their relative representativity, and use it to reconstruct T10 m over the entire Greenland ice sheet for the period 1950–2022 at a monthly timescale. We use 10-year averages and mean annual values of air temperature and snowfall from the ERA5 reanalysis dataset as model input. The ANN indicates a Greenland-wide positive trend of T10 m at 0.2 ∘C per decade during the 1950–2022 period, with a cooling during 1950–1985 (−0.4 ∘C per decade) followed by a warming during 1985–2022 (+0.7 ∘ per decade). Regional climate models HIRHAM5, RACMO2.3p2 and MARv3.12 show mixed results compared to the observational T10 m dataset, with mean differences ranging from −0.4 ∘C (HIRHAM) to 1.2 ∘C (MAR) and root mean squared differences ranging from 2.8 ∘C (HIRHAM) to 4.7 ∘C (MAR). The observation-based ANN also reveals an underestimation of the subsurface warming trends in climate models for the bare-ice and dry-snow areas. The subsurface warming brings the Greenland ice sheet surface closer to the melting point, reducing the amount of energy input required for melting. Our compilation documents the response of the ice sheet subsurface to atmospheric warming and will enable further improvements of models used for ice sheet mass loss assessment and reduce the uncertainty in projections.</p

    Amplified melt and flow of the Greenland ice sheet driven by late-summer cyclonic rainfall

    Get PDF
    Intense rainfall events significantly affect Alpine and Alaskan glaciers through enhanced melting, ice-flow acceleration and subglacial sediment erosion, yet their impact on the Greenland ice sheet has not been assessed. Here we present measurements of ice velocity, subglacial water pressure and meteorological variables from the western margin of the Greenland ice sheet during a week of warm, wet cyclonic weather in late August and early September 2011. We find that extreme surface runoff from melt and rainfall led to a widespread acceleration in ice flow that extended 140 km into the ice-sheet interior. We suggest that the late-season timing was critical in promoting rapid runoff across an extensive bare ice surface that overwhelmed a subglacial hydrological system in transition to a less-efficient winter mode. Reanalysis data reveal that similar cyclonic weather conditions prevailed across southern and western Greenland during this time, and we observe a corresponding ice-flow response at all land- and marine-terminating glaciers in these regions for which data are available. Given that the advection of warm, moist air masses and rainfall over Greenland is expected to become more frequent in the coming decades, our findings portend a previously unforeseen vulnerability of the Greenland ice sheet to climate change

    A Cyclic Undecamer Peptide Mimics a Turn in Folded Alzheimer Amyloid ÎČ and Elicits Antibodies against Oligomeric and Fibrillar Amyloid and Plaques

    Get PDF
    The 39- to 42-residue amyloid ÎČ (AÎČ) peptide is deposited in extracellular fibrillar plaques in the brain of patients suffering from Alzheimer's Disease (AD). Vaccination with these peptides seems to be a promising approach to reduce the plaque load but results in a dominant antibody response directed against the N-terminus. Antibodies against the N-terminus will capture AÎČ immediately after normal physiological processing of the amyloid precursor protein and therefore will also reduce the levels of non-misfolded AÎČ, which might have a physiologically relevant function. Therefore, we have targeted an immune response on a conformational neo-epitope in misfolded amyloid that is formed in advance of AÎČ-aggregation. A tetanus toxoid-conjugate of the 11-meric cyclic peptide AÎČ(22–28)-YNGKâ€Č elicited specific antibodies in Balb/c mice. These antibodies bound strongly to the homologous cyclic peptide-bovine serum albumin conjugate, but not to the homologous linear peptide-conjugate, as detected in vitro by enzyme-linked immunosorbent assay. The antibodies also bound—although more weakly—to AÎČ(1–42) oligomers as well as fibrils in this assay. Finally, the antibodies recognized AÎČ deposits in AD mouse and human brain tissue as established by immunohistological staining. We propose that the cyclic peptide conjugate might provide a lead towards a vaccine that could be administered before the onset of AD symptoms. Further investigation of this hypothesis requires immunization of transgenic AD model mice

    Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease

    Get PDF
    Inherited retinal disease is a common cause of visual impairment and represents a highly heterogeneous group of conditions. Here, we present findings from a cohort of 722 individuals with inherited retinal disease, who have had whole-genome sequencing (n = 605), whole-exome sequencing (n = 72), or both (n = 45) performed, as part of the NIHR-BioResource Rare Diseases research study. We identified pathogenic variants (single-nucleotide variants, indels, or structural variants) for 404/722 (56%) individuals. Whole-genome sequencing gives unprecedented power to detect three categories of pathogenic variants in particular: structural variants, variants in GC-rich regions, which have significantly improved coverage compared to whole-exome sequencing, and variants in non-coding regulatory regions. In addition to previously reported pathogenic regulatory variants, we have identified a previously unreported pathogenic intronic variant in CHM\textit{CHM} in two males with choroideremia. We have also identified 19 genes not previously known to be associated with inherited retinal disease, which harbor biallelic predicted protein-truncating variants in unsolved cases. Whole-genome sequencing is an increasingly important comprehensive method with which to investigate the genetic causes of inherited retinal disease.This work was supported by The National Institute for Health Research England (NIHR) for the NIHR BioResource – Rare Diseases project (grant number RG65966). The Moorfields Eye Hospital cohort of patients and clinical and imaging data were ascertained and collected with the support of grants from the National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital, National Health Service Foundation Trust, and UCL Institute of Ophthalmology, Moorfields Eye Hospital Special Trustees, Moorfields Eye Charity, the Foundation Fighting Blindness (USA), and Retinitis Pigmentosa Fighting Blindness. M.M. is a recipient of an FFB Career Development Award. E.M. is supported by UCLH/UCL NIHR Biomedical Research Centre. F.L.R. and D.G. are supported by Cambridge NIHR Biomedical Research Centre

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies
    • 

    corecore