97 research outputs found

    Covadonga, une Espagnole Ă  Bruxelles

    Full text link
    Tous les Belges de notre génération déjà ancienne ont un petit coin d’Espagne enfoui dans leur coeu

    insights from different stages of language acquisition

    Get PDF
    Solving arithmetic problems is a cognitive task that heavily relies on language processing. One might thus wonder whether this language-reliance leads to qualitative differences (e.g., greater difficulties, error types, etc.) in arithmetic for bilingual individuals who frequently have to solve arithmetic problems in more than one language. The present study investigated how proficiency in two languages interacts with arithmetic problem solving throughout language acquisition in adolescents and young adults. Additionally, we examined whether the number word structure that is specific to a given language plays a role in number processing over and above bilingual proficiency. We addressed these issues in a German–French educational bilingual setting, where there is a progressive transition from German to French as teaching language. Importantly, German and French number naming structures differ clearly, as two-digit number names follow a unit-ten order in German, but a ten-unit order in French. We implemented a transversal developmental design in which bilingual pupils from grades 7, 8, 10, 11, and young adults were asked to solve simple and complex additions in both languages. The results confirmed that language proficiency is crucial especially for complex addition computation. Simple additions in contrast can be retrieved equally well in both languages after extended language practice. Additional analyses revealed that over and above language proficiency, language-specific number word structures (e.g., unit-ten vs. ten-unit) also induced significant modulations of bilinguals' arithmetic performances. Taken together, these findings support the view of a strong relation between language and arithmetic in bilinguals

    Comparing Numerical Comparison Tasks: A Meta-Analysis of the Variability of the Weber Fraction Relative to the Generation Algorithm

    Get PDF
    Since more than 15 years, researchers have been expressing their interest in evaluating the Approximate Number System (ANS) and its potential influence on cognitive skills involving number processing, such as arithmetic. Although many studies reported significant and predictive relations between ANS and arithmetic abilities, there has recently been an increasing amount of published data that failed to replicate such relationship. Inconsistencies lead many researchers to question the validity of the assessment of the ANS itself. In the current meta-analysis of over 68 experimental studies published between 2004 and 2017, we show that the mean value of the Weber fraction (w), the minimal amount of change in magnitude to detect a difference, is very heterogeneous across the literature. Within young adults, w might range from <10 to more than 60, which is critical for its validity for research and diagnostic purposes. We illustrate here the concern that different methods controlling for non-numerical dimensions lead to substantially variable performance. Nevertheless, studies that referred to the exact same method (e.g., Panamath) showed high consistency among them, which is reassuring. We are thus encouraging researchers only to compare what is comparable and to avoid considering the Weber fraction as an abstract parameter independent from the context. Eventually, we observed that all reported correlation coefficients between the value of w and general accuracy were very high. Such result calls into question the relevance of computing and reporting at all the Weber fraction. We are thus in disfavor of the systematic use of the Weber fraction, to discourage any temptation to compare given data to some values of w reported from different tasks and generation algorithms

    Number transcoding in bilinguals—A transversal developmental study

    Get PDF
    Number transcoding is the cognitive task of converting between different numerical codes (i.e. visual “42”, verbal “forty-two”). Visual symbolic to verbal transcoding and vice versa strongly relies on language proficiency. We evaluated transcoding of German-French bilinguals from Luxembourg in 5th, 8th, 11th graders and adults. In the Luxembourgish educational system, children acquire mathematics in German (LM1) until the 7th grade, and then the language of learning mathematic switches to French (LM2). French `70s `80s `90s are less transparent than `30s `40s `50s numbers, since they have a base-20 structure, which is not the case in German. Transcoding was evaluated with a reading aloud and a verbal-visual number matching task. Results of both tasks show a cognitive cost for transcoding numbers having a base-20 structure (i.e. `70s, `80s and `90s), such that response times were slower in all age groups. Furthermore, considering only base-10 numbers (i.e. `30s `40s `50s), it appeared that transcoding in LM2 (French) also entailed a cost. While participants across age groups tended to read numbers slower in LM2, this effect was limited to the youngest age group in the matching task. In addition, participants made more errors when reading LM2 numbers. In conclusion, we observed an age-independent language effect with numbers having a base-20 structure in French, reflecting their reduced transparency with respect to the decimal system. Moreover, we find an effect of language of math acquisition such that transcoding is less well mastered in LM2. This effect tended to persist until adulthood in the reading aloud task, while in the matching task performance both languages become similar in older adolescents and young adults. This study supports the link between numbers and language, especially highlighting the impact of language on reading numbers aloud from childhood to adulthood

    Are parity and magnitude status of Arabic digits processed automatically? An EEG study using the fast periodic visual stimulation

    Get PDF
    Many studies have shown that humans can easily extract numerical characteristics of single digits such as numerical magnitude and parity status. We investigated whether spontaneous processing of magnitude or parity status can be observed when participants are passively presented with sequences of briefly displayed Arabic digits. We assessed the parity processing by presenting seven odd digit numbers followed by one even digit (and reverse) with a sinusoidal contrast modulation at a frequency of 10HZ in one-minute sequences. The same paradigm and frequencies were used to investigate magnitude processing (i.e. seven digits smaller than five followed by one digit larger than five; and reverse) and control condition (i.e. sequence of 1-4-6-9 followed by 2-3-7 or 8). We observed a strong EEG activation on right parietal electrodes and a weaker activation on left parietal electrodes in all conditions. Left and right activations were stronger in the parity than in the other conditions, reflecting an automatic retrieval of parity information conveyed by the Arabic digits. The weaker activation during the magnitude task could reflect a more complicated access of the information corresponding to magnitude status. Right activations during the control task could be due to the fact that subjects can quickly learn to categorize numbers arbitrarily. These neuronal activation patterns are consistent with the neuro-imaging literature describing the localization of basic numerical processing. Our findings indicate that magnitude and parity status are extracted automatically from Arabic digits, even when numerical stimuli are presented without instructions at a high presentation rate

    A Mental Odd-Even Continuum Account : Some Numbers May Be "More Odd" Than Others and Some Numbers May Be "More Even" Than Others

    Get PDF
    Numerical categories such as parity, i.e., being odd or even, have frequently been shown to influence how particular numbers are processed. Mathematically, number parity is defined categorically. So far, cognitive, and psychological accounts have followed the mathematical definition and defined parity as a categorical psychological representation as well. In this manuscript, we wish to test the alternative account that cognitively, parity is represented in a more gradual manner such that some numbers are represented as "more odd" or "more even" than other odd or even numbers, respectively. Specifically, parity processing might be influenced by more specific properties such as whether a number is a prime, a square number, a power of 2, part of a multiplication table, divisible by 4 or by 5, and many others. We suggest that these properties can influence the psychologically represented parity of a number, making it more or less prototypical for odd- or evenness. In the present study, we tested the influence of these numerical properties in a bimanual parity judgment task with auditorily presented two-digit numbers. Additionally, we further investigated the interaction of these numerical properties with linguistic factors in three language groups (English, German, and Polish). Results show significant effects on reaction times of the congruity of parity status between decade and unit digits, even if numerical magnitude and word frequency are controlled. We also observed other effects of the above specific numerical properties, such as multiplication attributes, which facilitated or interfered with the speed of parity judgment. Based on these effects of specific numerical properties we proposed and elaborated a parity continuum account. However, our cross-lingual study also suggests that parity representation and/or access seem to depend on the linguistic properties of the respective language or education and culture. Overall, the results suggest that the "perceived" parity is not the same as objective parity, and some numbers are more prototypical exemplars of their categories

    Longitudinal Impact of Childhood Adversity on Early Adolescent Mental Health During the COVID-19 Pandemic in the ABCD Study Cohort: Does Race or Ethnicity Moderate Findings?

    Get PDF
    Background During the COVID-19 pandemic in the United States, mental health among youth has been negatively affected. Youth with a history of adverse childhood experiences (ACEs), as well as youth from minoritized racial-ethnic backgrounds, may be especially vulnerable to experiencing COVID-19–related distress. The aims of this study are to examine whether exposure to pre-pandemic ACEs predicts mental health during the COVID-19 pandemic in youth and whether racial-ethnic background moderates these effects. Methods From May to August 2020, 7983 youths (mean age, 12.5 years; range, 10.6–14.6 years) in the Adolescent Brain Cognitive Development (ABCD) Study completed at least one of three online surveys measuring the impact of the pandemic on their mental health. Data were evaluated in relation to youths\u27 pre-pandemic mental health and ACEs. Results Pre-pandemic ACE history significantly predicted poorer mental health across all outcomes and greater COVID-19–related stress and impact of fears on well-being. Youths reported improved mental health during the pandemic (from May to August 2020). While reporting similar levels of mental health, youths from minoritized racial-ethnic backgrounds had elevated COVID-19–related worry, stress, and impact on well-being. Race and ethnicity generally did not moderate ACE effects. Older youths, girls, and those with greater pre-pandemic internalizing symptoms also reported greater mental health symptoms. Conclusions Youths who experienced greater childhood adversity reported greater negative affect and COVID-19–related distress during the pandemic. Although they reported generally better mood, Asian American, Black, and multiracial youths reported greater COVID-19–related distress and experienced COVID-19–related discrimination compared with non-Hispanic White youths, highlighting potential health disparities

    Numbers and language : what's new in the past 25 years?

    Get PDF
    Numerous studies in psychology, cognitive neuroscience and psycholinguistics have used pictures of objects as stimulus materials. Currently, authors engaged in cross-linguistic work or wishing to run parallel studies at multiple sites where different languages are spoken must rely on rather small sets of black-and-white or colored line drawings. These sets are increasingly experienced as being too limited. Therefore, we constructed a new set of 750 colored pictures of concrete concepts. This set, MultiPic, constitutes a new valuable tool for cognitive scientists investigating language, visual perception, memory and/or attention in monolingual or multilingual populations. Importantly, the MultiPic databank has been normed in six different European languages (British English, Spanish, French, Dutch, Italian and German). All stimuli and norms are freely available at http://www.bcbl.eu/databases/multipi
    • …
    corecore