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1. NUMBERS AND LANGUAGE: WHAT’S NEW IN THE PAST 25 YEARS?

The relationship between mathematical and verbal performance is not 
a clear one. On the one hand, both abilities seem to be related; on the 
other hand, many school systems offer pupils the opportunity to choose 
between a language-oriented education and a mathematics-oriented edu-
cation, suggesting the two types of skills diverge.

THE RELATIONSHIP BETWEEN VERBAL AND 
ARITHMETICAL PERFORMANCE IN THE WISC 

INTELLIGENCE TEST

One way to assess the relationship between verbal and arithmetical 
performance is to see how they correlate in intelligence tests. Wechsler 
(1949), for instance, made a distinction between verbal intelligence and 
performance intelligence, and he included a test of arithmetic in the ver-
bal scale. In the Wechsler Intelligence Scale for Children (WISC), the test 
of arithmetic correlated .6 with the verbal scale and .45 with the perfor-
mance scale (Seashore, Wesman, & Doppelt, 1950). For comparison, the 
vocabulary subtest (the most typical verbal test in the WISC) correlated .75 
with the verbal scale and .55 with the performance scale. The test with the 
highest correlation to the performance scale was the object assembly test, 
correlating .35 with the verbal scale and .6 with the performance scale. The 
arithmetic test was retained as part of the verbal scale when the WISC was 
revised for the first time (and called the WISC-R).

Factor analyses indicated, however, that a third factor was present in 
the WISC and the WISC-R. This factor was difficult to interpret but was 
called “freedom from distractibility.” A new test was added to the WISC-
III (the symbol search test) to better measure the elusive third factor, but 
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RELATIONSHIP BETWEEN VERBAL AND ARITHMETICAL PERFORMANCE

this did not succeed very well because a new factor analysis hinted at 
four factors (Keith & Witta, 1997) as shown in Fig. 1.1. Surprisingly, in this 
analysis, the arithmetic subtest became the best measure of the factor free-
dom from distractibility. In addition, this factor had the highest correlation 
with the overall score (considered to be a measure of general intelligence, 
or g). Both findings suggested that the factor freedom from distractibility 
was more central to intelligence than its name suggested. Keith and Witta 
(1997) proposed to rename it as “quantitative reasoning.” Unfortunately, 
only two tests loaded on the factor, which is weak evidence for a factor.

The fourth revision of the WISC included extra tests to better measure 
the four first-order factors. In particular, it was hypothesized that the 

FIGURE 1.1 Outcome of a hierarchical factor analysis of the WISC-III. Subtests are a mea-
sure of both general intelligence (g) and a first-order variable. Four first-order variables could 
be discerned. The test of arithmetic loaded on the first-order variable freedom from distract-
ibility, together with the digit span test. From Keith, T. Z., & Witta, E. L. (1997). Hierarchical and 
cross-age confirmatory factor analysis of the WISC-III: What does it measure? School Psychology 
Quarterly, 12(2), 89–107.
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freedom from distractibility factor actually could be a working memory 
factor and new tests were added to better capture it. This seemed to work 
reasonably well (Keith, Fine, Taub, Reynolds, & Kranzler, 2006), as shown 
in Fig. 1.2 (although a solution with five first-order factors provided a 
 better fit).

All in all, the analyses of the WISC-III and WISC-IV confirm that arith-
metic skills are correlated to language skills (via the high correlations with 
g) and at the same time form two different intelligence factors on which 
individuals can score high or low (see also Reynolds, Keith, Flanagan, & 
Alfonso, 2013).

A similar conclusion was reached on the basis of an analysis specifi-
cally geared toward mathematical knowledge. Taub, Floyd, Keith, and 
McGrew (2008) predicted mathematics achievement on the basis of IQ 
subtests. The mathematics tests consisted of a calculation test (ranging 
from simple addition facts to calculus) and an applied problems test in 
which the nature of the problem had to be comprehended, relevant infor-
mation identified, calculations performed, and solutions stated. Data were 
available from 5-year-old children to 19-year-old children. Fluid reason-
ing (similar to working memory) had an effect in all age groups (see also 
Primi, Ferrão, & Almeida, 2010). For the younger pupils, processing speed 
also contributed to the performance, whereas for the older participants, 
crystallized intelligence became more important (arguably to retrieve sim-
ple solutions from long-term memory; see also Calderón-Tena & Caterino, 
2016).

Interestingly, the broader Cattell–Horn–Carroll (CHC) model, on which 
the analyses of Figs. 1.1 and 1.2 were based and which is currently seen 
as the best summary of intelligence research, postulates the existence of 
a separate first-order factor quantitative knowledge (McGrew, 2009), as 
shown in Fig. 1.3. Therefore, the expectation is that with the right tests 
included, numerical knowledge will come out as an individual type of 
intelligence, although so far attempts have not been successful (e.g., Keith, 
Low, Reynolds, Patel, & Ridley, 2010).

COGNITIVE PROCESSES INVOLVED IN NUMERICAL 
COGNITION: THE 1990s

The relationship between verbal and mathematical performance in 
intelligence tests provides an interesting background but is limited by the 
type of tests used to assess the various skills. In the psychometric tradition, 
tests have mainly been proposed via trial and error, starting with the first 
intelligence test published by Binet and Simon (1907). Tests that correlated 
with school achievement were retained, others were replaced. In addition, 
there is a strong force not to change existing arrangements too much, as 
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COGNITIVE PROCESSES INVOLVED IN NUMERICAL COGNITION: THE 1990s

FIGURE 1.2 Outcome of a hierarchical factor analysis of the WISC-IV. Subtests are a mea-
sure of both general intelligence (g) and a first-order variable. Four first-order variables could 
be discerned. The test of arithmetic loaded on the first-order variable working memory. From 
Keith, T. Z., Fine, J. G., Taub, G. E., Reynolds, M. R., & Kranzler, J. H. (2006). Higher order, multi-
sample, confirmatory factor analysis of the Wechsler Intelligence Scale for Children – fourth edition: 
What does it measure? School Psychology Review, 35(1), 108–127.
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practitioners do not like radically new revisions of existing tests. Therefore, 
the factors emerging from the factor analyses may to some extent be an 
artifact of the initial choices made in the design of intelligence tests (but 
see Jewsbury, Bowden, & Strauss, 2016 for an interesting study about the 
overlap between the processes postulated in cognitive models of executive 
function and factors emerging from the CHC model of intelligence).

A different approach is to start from an analysis of the cognitive pro-
cesses involved in number and word processing, independent of whether 
these processes are related to individual differences in performance. The 
1990s were a particularly fruitful decade in this respect, largely because 
of the publications of Dehaene and the responses they elicited from other 
researchers.

According to Dehaene (1992; Dehaene, Dehaene-Lambertz, & Cohen, 
1998), a tacit hypothesis in cognitive arithmetic was that numerical abilities 
derived from human linguistic competence. In his own words (Dehaene, 
1992, pp. 2–3): “For the lay person, calculation is the numerical activ-
ity par excellence. Calculation in turn rests on the ability to read, write, 
produce or comprehend numerals […]. Therefore number processing, in 
its fundamental form, seems intuitively linked to the ability to mentally 
manipulate sequences of words or symbols according to fixed transcoding 
or calculation rules.”

FIGURE 1.3 The Cattell–Horn–Carroll model of intelligence. The model postulates a 
general intelligence factor and ten first-order factors, of which quantitative knowledge is 
one. Based on McGrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing 
on the shoulders of the giants of psychometric intelligence research. Intelligence, 37(1), 1–10. Used 
with permission from Elsevier.
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NUMBERS AND THEIR RELATION TO LANGUAGE

Based on data from adults, infants, and animals, Dehaene (1992) argued 
that number processing on the basis of symbols is not the only processing the 
human brain is capable of. A second pathway makes use of an innate quan-
tity system. The quantity system is based on analog encoding and allows 
accurate representations for numbers up to 3 or 4 and approximate quantities 
for larger numbers. Evidence for the involvement of such a quantity-based 
pathway was found in animals, young children, and in number comparison 
tasks with adults. When participants are asked to indicate whether a two-
digit number is larger or smaller than 65, response times decrease as a func-
tion of the logarithm of the distance between the number and 65. Therefore, 
participants are faster at indicating that 61 is smaller than 65 than that 63 
is smaller than 65. Importantly, they are also faster at indicating that 51 is 
smaller than 65 than that 59 is smaller than 65, a finding that would not be 
predicted if two-digit numbers were encoded entirely as ordered sequences 
of two symbols. Both 51 and 59 start with the tens digit 5, which is different 
from the tens digit of the comparison number 65. Therefore, if the compari-
son was based on the tens digits alone, no difference would be predicted in 
deciding that 51 is smaller than 65 than in deciding that 59 is smaller than 
65 (as both comparisons would boil down to deciding that 5 is smaller than 
6). The metaphor of an analog, compressed number line was proposed, with 
clearer distinctions at the low end than at the high end.

The verbal pathway and the number line pathway were part of the 
triple-code model Dehaene (1992) proposed for number processing. He 
argued that the meaning of numbers is encoded in three ways:
  

 1.  An auditory-verbal code, similar to the semantic representations of 
words.

 2.  A visual-Arabic code, in which numbers are manipulated in Arabic 
format on a spatially extended representational medium.

 3.  An analog-magnitude code, in which numerical quantities are 
represented as inherently variable distributions of activation over a 
compressed analogical number line.

  

Dehaene further proposed that the three codes interact with each other 
and are activated by different types of input, as shown in Fig. 1.4.

WHAT HAVE WE LEARNED ABOUT NUMBERS AND 
THEIR RELATION TO LANGUAGE SINCE?

Dehaene’s (1992) article and the special journal issue, of which it was 
part, were a catalyst in number processing research. While research before 
had been scattered, now a sufficiently large group of scholars took up the 
topic and became organized by arranging symposia and workshops and 
by publishing special journal issues and edited handbooks (e.g., Campbell, 
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2005; Kadosh & Dowker, 2015). The number of paper submissions to jour-
nals grew so substantial that editors started to appoint dedicated action 
editors for the topic.

Unfortunately, the large number of publications has not (yet?) led to a 
flurry of “established findings” related to numerical and verbal perfor-
mance. As it happens, I could find five. Four other topics are still in full 
debate. I discuss them successively.

THINGS WE HAVE LEARNED I: SMALL NUMBERS ARE 
EASIER TO PROCESS THAN LARGE NUMBERS

A consistent finding in number processing is that small numbers are 
easier to process than large numbers. One of the first robust findings was 
that people can easily discriminate between one, two, three, and some-
times four elements but require increasingly more time to discern five, six, 
seven,… elements. The fast perception of small numbers of elements is 
called subitizing (Kaufman, Lord, Reese, & Volkmann, 1949; Taves, 1941).

Small numbers are also easier to compare with each other than large 
numbers: People are faster to indicate that two is smaller than three than 
that eight is smaller than nine (Moyer & Landauer, 1967).

∞

FIGURE 1.4 Dehaene’s triple-code model of number processing. The three octagons rep-
resent the three codes that together form the meaning of numbers. For each code, the input 
and output and the main operations involving the code are given. From Dehaene, S. (1992). 
Varieties of numerical abilities. Cognition, 44(1), 1–42.
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A DIRECT ARABIC-VERBAL TRANSLATION ROUTE

Finally, arithmetic operations are easier with small numbers than with 
large numbers (Knight & Behrens, 1928). The problem 2 + 3 is easier to 
solve than 4 + 5; the same is true for 2 × 3 versus 4 × 5. This problem size 
effect is present when the numbers are presented as Arabic digits and 
when they are presented as words (Noël, Fias, & Brysbaert, 1997).

THINGS WE HAVE LEARNED II: THE ANALOG-
MAGNITUDE SYSTEM ACTIVATES A PART OF THE 
CORTEX THAT IS NOT INVOLVED IN LANGUAGE 

PROCESSING

As Fig. 1.5 shows, most brain regions of the left cerebral cortex are 
involved in language processing. Still, the areas that consistently light up 
when a task assesses number magnitude processing—the left and right 
intraparietal sulci—fall outside the zone, as can be seen in Fig. 1.6. Bueti 
and Walsh (2009) reviewed the literature indicating that this region is active 
not only in number processing but also in time and space understanding. 
Van Opstal and Verguts (2013), however, pointed to problems with this 
view of the intraparietal sulcus as a generalized magnitude system.

For the sake of completeness, it is important to keep in mind that the 
intraparietal sulci do not work in isolation but form part of larger net-
works. In particular, interactions with the lateral prefrontal cortex are 
important (Nieder & Dehaene, 2009).

THINGS WE HAVE LEARNED III: THERE IS A DIRECT 
ARABIC-VERBAL TRANSLATION ROUTE

An element from the triple-code model that elicited some controversy 
was whether it was possible to directly translate Arabic numbers into spo-
ken (and written) numbers. An alternative model proposed by McCloskey, 
Caramazza, and Basili (1985) postulated that all numerical processing 
required mediation by the semantic system. Some evidence pointed in this 
direction. Fias, Reynvoet, and Brysbaert (2001), for instance, presented a digit 
and a number word on the same screen and asked the participants to name 
the word or the digit. The word and the digit either pointed to the same num-
ber (e.g., 6—six) or to different numbers (6—five). Fias et al. observed that the 
digit was named faster when the two stimuli referred to the same number 
than when they referred to different numbers. No such interference effect 
was observed for the naming of number words. In contrast, when the partici-
pants had to indicate whether the digit or the word was an odd or an even 
number, there was equivalent interference for both notations. On the basis 
of this pattern of results, Fias et al. concluded that digits were processed like 
pictures and could not be named via a nonsemantic, direct translation route.
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FIGURE 1.5 Brain areas of the left hemisphere active in language processing. From Price, 
C. J. (2012). A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, 
spoken language and reading. Neuroimage, 62(2), 816–847.
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DIFFERENCES IN PROCESSING ARABIC AND VERBAL NUMBERS

In recent years, however, several paradigms have shown that nonseman-
tic naming of Arabic numbers is possible (see also Roelofs, 2006, for evi-
dence based on the interference effect used by Fias et al., 2001). One series 
of experiments made use of the semantic blocking paradigm (Herrera & 
Macizo, 2012). In this paradigm, five stimuli are presented over and over 
again to be named. Two different conditions are distinguished: A blocked 
condition in which the stimuli come from the same semantic category (e.g., 
five animals) and a mixed condition in which the stimuli come from differ-
ent semantic categories (e.g., an animal, a body part, a piece of furniture, 
a vehicle, and a piece of clothing). The typical finding in this paradigm is 
that words are named faster in the blocked condition than in the mixed 
condition but that pictures are named more slowly in the blocked condition. 
The difference in naming cost is explained by assuming that words can be 
named directly, whereas pictures require semantic mediation to be named. 
In the blocked picture naming condition, the various concepts and names 
compete and hinder each other. The semantic blocking paradigm is ideal 
to test whether digits are named like words or pictures, as the alternative 
interpretations predict opposite effects. In a series of experiments, Herrera 
and Macizo (2012) showed that digits are named faster in a blocked condi-
tion than in a mixed condition, thus resembling words and deviating from 
pictures.

THINGS WE HAVE LEARNED IV: THERE ARE 
DIFFERENCES IN PROCESSING ARABIC NUMBERS 

AND VERBAL NUMBERS

Arabic and verbal numbers are not interchangeable, even not for num-
bers below 10 (it was traditionally thought that the Arabic notation was 
particularly efficient for multidigit numbers). An important finding is 

FIGURE 1.6 The intraparietal sulci (left and right) are active whenever number mag-
nitude is addressed in a task. From Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. 
(2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44(3), 
547–555.
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that calculations are more efficient when the problems are given in Arabic 
notation than in verbal notation. Therefore, “4 + 2” is solved faster than 
“four + two,” even though naming times of digits and number words are 
the same (Clark & Campbell, 1991; Noël et al., 1997; see also Megías & 
Macizo, 2016, for other evidence that digits activate arithmetic informa-
tion more strongly than words).

The advantage of digits over words is also true when the numbers 
are presented as part of word problems. Therefore, children are better at 
solving the visually presented problem “Manuel had 3 marbles and then 
Pedro gave him 5” than at solving the problem “Manuel had three mar-
bles and then Pedro gave him five” (Orrantia, Múñez, San Romualdo, & 
Verschaffel, 2015). More in general, magnitude information is activated 
faster by Arabic numbers than by verbal numbers (Ford & Reynolds, 2016; 
Kadosh, Henik, & Rubinsten, 2008).

THINGS WE HAVE LEARNED V: INDIVIDUALS 
WITH DYSLEXIA HAVE POORER ARITHMETIC 

PERFORMANCE

Despite the differences between Arabic number processing and ver-
bal number processing, people with reading difficulties are likely to 
experience mathematical deficits as well. For a start, there is a high 
comorbidity of dyslexia and dyscalculia. In a sample of 2586 primary 
school children, Landerl and Moll (2010) observed 181 children (7%) 
with a reading deficit, of whom 23% had an additional arithmetic deficit. 
Toffalini, Giofrè, and Cornoldi (2017) analyzed the data of 1049 children 
referred to psychologists for assessment of learning difficulties. Of these 
children, 308 (29%) had a specific reading difficulty, 147 (14%) a specific 
spelling problem, 93 (9%) a specific calculation deficit, and 501 (48%) a 
mixed deficit (not further specified). At present, it is not clear whether 
the comorbidity of dyslexia and dyscalculia is due to common underly-
ing processes or to divergent processes that have joint risks of malfunc-
tioning (e.g., due to genetic influences; Moll, Goebel, Gooch, Landerl, & 
Snowling, 2016).

Second, high-performing university students with dyslexia are slower 
at naming digits and at doing elementary arithmetic (Callens, Tops, &  
Brysbaert, 2012; De Smedt & Boets, 2010). The effect sizes are large (Cohen’s 
d ≈ 1.0), although not as large as those seen in word naming speed and 
spelling accuracy (d ≈ 2.0; Callens et al., 2012). This again suggests an over-
lap of the processes involved in verbal and arithmetical skills. One ele-
ment of overlap could be that the addition and multiplication tables are 
stored in verbal memory.
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THE NUMBER QUANTITY SYSTEM

THINGS WE ARE STILL TRYING TO DECIDE I: WHAT 
IS THE NATURE OF THE NUMBER QUANTITY 

SYSTEM?

Dehaene (1992) put forward a few strong hypotheses about the number 
quantity system. The first was that it was an analog system, based on a 
combination of summation and place coding (for computational imple-
mentations, see Dehaene & Changeux, 1993; Verguts & Fias, 2004). The 
activations of the various elements in the input were summed and then 
translated into activation patterns on an ordered and compressed (e.g., 
logarithmic) “number line.”

The second element was that the number quantity system was not really a 
magnitude system but an abstract number system (ANS), based on modality- 
independent, discrete amounts. Dehaene used the term “numerosity” to 
refer to the number of elements perceived, rather than to the summed 
magnitude (mass, density, surface,…) of the elements. When all items to be 
counted are of the same size, magnitude and numerosity are perfectly cor-
related. However, this is no longer the case if the items differ in magnitude: 
Two big items can have a bigger mass than three small elements. The ANS 
was supposed to respond to the discrete number of elements and not to the 
continuous magnitude correlates (mass, density, surface covered).

The third element proposed by Dehaene was that the number line was 
oriented along the reading direction. Therefore, for languages read from 
left to right, the small numbers were located on the left side of the number 
line and the large numbers on the right side.

It is fair to say that all three hypotheses are still heavily contested. 
First, the compressed nature of the number magnitude system has been 
questioned. Other explanations are: more noise for large numbers than 
for small numbers (Gallistel & Gelman, 1992), differences in frequency of 
occurrence between numbers (Piantadosi, 2016), and asymmetries because 
of the task rather than the nature of the number line (Cohen & Quinlan, 
2016; Verguts, Fias, & Stevens, 2005).

Second, the idea of the ANS being unresponsive to magnitude differ-
ences between the discrete elements has been questioned as well, given 
that in real life there are virtually no situations in which numerosity and 
mass are uncorrelated (Cantrell & Smith, 2013; Gebuis, Kadosh, & Gevers, 
2016; Reynvoet & Sasanguie, 2016). Some authors have proposed that a 
discrete number system may have evolved next to a continuous magni-
tude system (Leibovich, Vogel, Henik, & Ansari, 2015).

Still related to the issue of the true nature of the ANS system, other 
authors have argued that the system may be order related rather than (or 
in addition to) numerosity related (Berteletti, Lucangeli, & Zorzi, 2012; 
Goffin & Ansari, 2016; Merkley, Shimi, & Scerif, 2016; Van Opstal, Gevers, 
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De Moor, & Verguts, 2008). Just like there is a high correlation between 
numerosity and magnitude, there is a high correlation between numeros-
ity and order. The main difference is that order applies to more stimuli 
than to numbers.

Finally, the left–right orientation of the number line has been questioned 
as well, based on the finding that the orientation is mostly observed when 
numbers must be kept in working memory, leading to the proposal that 
the orientation is limited to numbers held in working memory (van Dijck, 
Abrahamse, Acar, Ketels, & Fias, 2014; but see Huber, Klein, Moeller, & 
Willmes, 2016). There is also some evidence that the spatial-numerical asso-
ciation of response codes effect may not be reversed in people with a lan-
guage read from right to left (Zohar-Shai, Tzelgov, Karni, & Rubinsten, 2017).

THINGS WE ARE STILL TRYING TO DECIDE II: HOW 
DOES KNOWLEDGE OF NUMBER SYMBOLS AFFECT/

SHARPEN THE NUMBER MAGNITUDE SYSTEM?

Given that there are differences because of number notation, a straight-
forward question is to what extent the use of number symbols alters the 
meaning of numerosities. To what extent do the semantic representations 
of educated human adults differ from those of preverbal children and ani-
mals? Some authors have suggested that the use of symbols makes the 
number line linear rather than compressed (Siegler & Opfer, 2003), but oth-
ers have doubted the empirical evidence for this claim (Huber, Moeller, &  
Nuerk, 2014). Others have argued that number symbols make the seman-
tic representations sharper so that there are less confusions between 
numerosities (Verguts & Fias, 2004). Still others have proposed that sym-
bolic numbers form a separate type of representations, as indicated earlier 
(Leibovich et al., 2015; Sasanguie, De Smedt, & Reynvoet, 2017).

THINGS WE ARE STILL TRYING TO DECIDE III: 
WHAT IS THE RELATIVE IMPORTANCE OF THE ANS 

TO MATHEMATICAL PERFORMANCE?

A third topic of discussion is to what extent the approximate number 
system contributes to mathematical achievement. Dehaene saw the ANS 
as the core of number knowledge from which all other number-related 
information emerged. A similar view was defended by Butterworth 
(2005; see also Landerl, Bevan, & Butterworth, 2004), and some authors 
found evidence in line with this hypothesis (Schleepen, Van Mier, & 
De Smedt, 2016; Zhang, Chen, Liu, Cui, & Zhou, 2016). Others, however, 
failed to find evidence (Cipora & Nuerk, 2013; Geary & Vanmarle, 2016) 
or found a stronger effect for symbolic comparison rather than nonsym-
bolic magnitude comparison (Fazio, Bailey, Thompson, & Siegler, 2014; 
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LANGUAGE EFFECT ON MATHEMATICAL OPERATIONS

Honoré & Noël, 2016; Vanbinst, Ansari, Ghesquière, & De Smedt, 2016; 
Vanbinst, Ghesquière, & De Smedt, 2012).

All in all, it seems unlikely that the ANS is strongly related to math-
ematical achievements in healthy participants. A remaining possibility 
is that ANS malfunctioning is rare but with grave consequences so that 
people with a deficient ANS have severe dyscalculia but are too rare to 
influence correlations in large-scale population studies.

THINGS WE ARE STILL TRYING TO DECIDE IV: 
DOES LANGUAGE HAVE AN EFFECT ON HOW 

MATHEMATICAL OPERATIONS ARE PERFORMED?

A basic question about cognitive performance is to what extent lan-
guage affects thought (also known as linguistic relativity or the Whorfian 
hypothesis). Is it possible to think without language and is thinking differ-
ent in languages that carve reality in dissimilar ways? Importantly, the lan-
guage differences should point to fundamental differences in processing, 
not simply to differences in strategies to cope with the language difference. 
For instance, Brysbaert, Fias, and Noël (1998) reported that Dutch-speaking 
participants are faster to name the solution of problem 4 + 21 than of the 
problem 21 + 4, whereas French-speaking participants show the opposite 
effect, in line with the observation that two-digit numbers in Dutch but 
not in French are pronounced in the reverse way: five and twenty instead 
of twenty-five. Crucially, the language difference disappeared when both 
groups of participants were asked to type the answers. With this task, both 
Dutch-speaking and French-speaking participants were faster to solve 
21 + 4 than 4 + 21, leading Brysbaert et al. (1998) to conclude that the lan-
guage difference in arithmetic was not a true Whorfian effect.

An argument sometimes used against the idea that language shapes 
thought is the observation that aphasic people are not obviously deficient in 
their thinking (e.g., Siegal, Varley, & Want, 2001). This rules out a strong ver-
sion of the linguistic relativity (thought is impossible without language) but 
not necessarily a weaker version (language affects thought). Indeed, there is 
evidence that some nonverbal functions such as picture categorization are 
hindered in people with aphasia (Lupyan & Mirman, 2013), in line with a 
weak version of linguistic relativity (Lupyan, 2015; Wolff & Holmes, 2011).

Several researchers have taken issue with the initial negative evidence 
for Whorfian effects in number processing. For instance, Colomé, Laka, 
and Sebastián-Gallés (2010) reported that Basque speakers solve prob-
lems such as 20 + 15 faster than Italian or Catalan speakers, both when the 
solution had to be named and typed, in line with the observation that the 
Basque language combines multiples of 20 in its number naming system 
(e.g., 35 is said as “twenty and fifteen”). A language effect between Basque 
and Spanish was also reported by Salillas and Carreiras (2014).
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Pixner, Moeller, Hermanova, Nuerk, and Kaufmann (2011) showed that 
participants find it harder to decide that 47 is smaller than 62 than that 
42 is smaller than 57 because in the former case there is an incongruity 
between the response required (47 < 62) and the response elicited by the 
units (7 > 2). Critically, the incongruity effect was larger in German, which 
names the units before the tens (seven and forty), than in Italian or Czech, 
which put the tens before the units (forty-seven). Moeller, Shaki, Göbel, 
and Nuerk (2015) successfully replicated the effect.

A related topic is how bilinguals with contradicting number names 
cope. It is well documented that bilinguals continue to do arithmetic in the 
language they used in school, leading to confusions when the school lan-
guage changes or when people later have a different dominant language 
(Prior, Katz, Mahajna, & Rubinsten, 2015; Van Rinsveld, Brunner, Landerl, 
Schiltz, & Ugen, 2015).

NEW THINGS LANGUAGE RESEARCHERS  
HAVE TO OFFER I: SEMANTIC VECTORS

Research on the commonalities and the differences between language 
and numerical cognition can take inspiration from new developments 
on the other side. In the remainder of this Chapter 1 two new develop-
ments in language research are mentioned, which may be of interest to 
colleagues working in numerical cognition.

A first interesting development in language research is that the meaning 
of a target word can be approximated by studying the words surround-
ing the target word (Landauer & Dumais, 1997; Lazaridou, Marelli, & 
Baroni, 2017; Mandera, Keuleers, & Brysbaert, 2017; Sadeghi, McClelland, 
& Hoffman, 2015). A successful way of doing so is to use a three-layer con-
nectionist network (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013,  
pp. 3111–3119). The input layer consists of some 100 thousand nodes rep-
resenting the words found in a billion-word corpus. The output layer con-
sists of the same nodes. In between, there is a hidden layer with 200–300 
nodes. The network is trained as follows. A corpus is read word by word. 
For each target word activated in the output layer, a few words before the 
target word and a few words after the target word in the corpus are acti-
vated at the input layer. The weights are changed so that the prediction of 
the target word improves, given the surrounding words in the input layer. 
At the end of the training, the activity vector in the hidden layer activated 
by a target word represents the semantic representation of that word (see 
Fig. 1.7).

Such semantic vectors are quite good predictors of semantic distance 
judgments, semantic priming data, and synonym judgment (Mandera 
et al., 2017). Fig. 1.8 shows the semantic distances between the number 

Author's personal copy



NEW THINGS LANGUAGE RESEARCHERS HAVE TO OFFER I: SEMANTIC VECTORS 19

I. LANGUAGE

Heterogeneity of Function in Numerical Cognition, First Edition, 2018, 3-26

FIGURE 1.7 Network to calculate semantic vectors. A network is trained to predict tar-
get words on the basis of the surrounding words. In this example, the weights are changed 
so that the activity of the word node “furry” in the output layer increases when the words 
“black” and “cat” are activated in the input layer. The activity patterns in the hidden layer 
at the end of the training form the words’ semantic vectors. From Mandera, P., Keuleers, E., &  
Brysbaert, M. (2017). Explaining human performance in psycholinguistic tasks with models of 
semantic similarity based on prediction and counting: A review and empirical validation. Journal of 
Memory and Language, 92, 57–78.

 One two three four five six seven eight nine ten 
zero 0.66 0.69 0.70 0.66 0.59 0.65 0.63 0.65 0.59 0.66 

one  0.35 0.40 0.42 0.48 0.50 0.51 0.51 0.52 0.54 

two   0.13 0.18 0.27 0.28 0.33 0.33 0.39 0.38 
three    0.11 0.24 0.23 0.29 0.27 0.35 0.36 
four     0.20 0.20 0.22 0.21 0.29 0.31 
five      0.23 0.23 0.20 0.25 0.15 
six       0.20 0.15 0.22 0.29 
seven        0.14 0.17 0.29 
eight         0.13 0.24 
nine          0.29 

FIGURE 1.8 Semantic distances between number words based on semantic vectors 
(0.00 = no distance, 1.00 = maximal distance). The font size stresses the semantic similarity. 
This shows a distance-related similarity effect: Numbers close in value have a larger similar-
ity than numbers farther away. The number zero is not much related to any other number. 
Mandera, P., Keuleers, E., & Brysbaert, M. (2017). From Explaining human performance in psycho-
linguistic tasks with models of semantic similarity based on prediction and counting: A review and 
empirical validation. Journal of Memory and Language, 92, 57–78.
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FIGURE 1.9 Hub-and-spoke model to represent information about people in an imagi-
nary world. This model represents information about five people (Lance, Art, Rick, Sam, 
Ralph) who have different ages (20, 30, 40), have different occupations (burglar, bookie, 
pusher), have different marital status (married, single, divorced), belong to different groups 
(jet, shark), and have finished different education levels (junior high school, high school, col-
lege). Important in the model is the use of central person nodes (the hub), linking the various 
aspects belonging to an individual (spokes). From McClelland, J. L. (1981). Retrieving general 
and specific information from stored knowledge of specifics. In: Proceedings of the third annual 
meeting of the cognitive science society.

words zero to ten (in English). This figure shows that numbers close 
in value resemble each other more than numbers further apart, simply 
because they more often co-occur in texts. It will be interesting to examine 
to what extent the semantic vectors agree with the distance-related effects 
reported in number comparison and number priming (see also Krajcsi, 
Lengyel, & Kojouharova, 2016). Another aspect shown in Fig. 1.8 is that 
the number zero is rather unrelated to the other numbers, in line with the 
finding that the position of the number zero on the number line is uncer-
tain (Brysbaert, 1995; Pinhas & Tzelgov, 2012).

NEW THINGS LANGUAGE RESEARCHERS HAVE 
TO OFFER II: THE HUB-AND- SPOKE MODEL OF 

SEMANTIC REPRESENTATION

Another interesting idea is one originally proposed by McClelland (1981), 
which has been applied several times in his simulation work (e.g., Rogers 
et al., 2004). Fig. 1.9 illustrates the idea. Whenever various characteristics 
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of a stimulus must be combined, it makes sense to represent the stimulus 
as a central, amodal node (hub) in a network connected to modal feature 
nodes within separate layers (spokes). Such a model successfully predicted 
the neuroscientific finding that the meaning of stimuli can involve brain 
areas as diverse as the visual cortex and the motor cortex. It also success-
fully accounts for the progression of meaning loss in semantic dementia 
(Rogers et al., 2004). A hypothesis is that the hub of the system is situated 
in the anterior temporal lobes (Ralph, Jefferies, Patterson, & Rogers, 2017).

It is not difficult to reformulate Dehaene’s (1992) triple-code model 
into a hub-and-spoke model. Rather than having the mutual interactions 
between the three codes, each code would send activation to a central hub 
of amodal nodes representing the various numbers. In this way, various 
types of information can be integrated, including new information (such 
as that coming from semantic vectors and historical facts). As a matter 
of fact, one of the first models proposed for number representations—
the encoding-complex model—came very close to such a hub-and-spoke 
model. The encoding-complex model (Campbell & Clark, 1988) stated 
that numerals become associated with a variety of numerical functions 
(number reading or transcoding, number comparison, estimation, arith-
metic facts,…), which interact with each other and are activated to vari-
ous extents depending on the task to be performed. One of the factors 
that have hindered acceptance of the model was that it seemed difficult 
to implement. The hub-and-spoke model may be a way forward.

CONCLUSIONS

In this chapter, I have reviewed the developments of the past 25 years in our 
knowledge about number processing and its relationship to language profi-
ciency. First, I showed that arithmetic in intelligence tests initially was seen as 
part of the verbal scale but later became part of a different (though correlated) 
factor. Then, I discussed the cognitive models from the 1990s, which focused 
on the differences between numerical and verbal performance. I argue that 
research on this topic has led to five established findings and four issues that 
are still hotly debated. Finally, I presented two new findings from psycholin-
guistics, which may be of interest to researchers on number processing.
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