310 research outputs found

    Seasonal Photoperiods Alter Developmental Time and Mass of an Invasive Mosquito, Aedes albopictus (Diptera: Culicidae), Across Its North-South Range in the United States

    Get PDF
    The Asian tiger mosquito, Aedes albopictus (Skuse), is perhaps the most successful invasive mosquito species in contemporary history. In the United States, Ae. albopictus has spread from its introduction point in southern Texas to as far north as New Jersey (i.e., a span of approximate to 14 degrees latitude). This species experiences seasonal constraints in activity because of cold temperatures in winter in the northern United States, but is active year-round in the south. We performed a laboratory experiment to examine how life-history traits of Ae. albopictus from four populations (New Jersey [39.4 degrees N], Virginia [38.6 degrees N], North Carolina [35.8 degrees N], Florida [27.6 degrees N]) responded to photoperiod conditions that mimic approaching winter in the north (short static daylength, short diminishing daylength) or relatively benign summer conditions in the south (long daylength), at low and high larval densities. Individuals from northern locations were predicted to exhibit reduced development times and to emerge smaller as adults under short daylength, but be larger and take longer to develop under long daylength. Life-history traits of southern populations were predicted to show less plasticity in response to daylength because of low probability of seasonal mortality in those areas. Males and females responded strongly to photoperiod regardless of geographic location, being generally larger but taking longer to develop under the long daylength compared with short day lengths; adults of both sexes were smaller when reared at low larval densities. Adults also differed in mass and development time among locations, although this effect was independent of density and photoperiod in females but interacted with density in males. Differences between male and female mass and development times was greater in the long photoperiod suggesting differences between the sexes in their reaction to different photoperiods. This work suggests that Ae. albopictus exhibits sex-specific phenotypic plasticity in life-history traits matching variation in important environmental variables

    Research with marginalised communities: reflections onengaging Roma Women in Northern England

    Get PDF
    This paper critically explores research with marginalised communities.We provide an insight into our work with the Roma community, reflectingon innovation, opportunities and barriers, alongside the need for morework in this area. A particular focus here surrounds novel methodologiesfor exploring the health and wellbeing of such groups and ways of coproducing research. The paper also raises awareness around arts-basedsocial prescribing with marginalised communities and the need toupscale work in this regard. Through doing so, we hope to influencepractice, raise awareness around work with the Roma community andenable more creativity within the broader field

    Correction to: GloPL,a Global Data Base on Pollen Limitation of Plant Reproduction (Scientific Data, (2018), 5, (180249), 10.1038/sdata.2018.249)

    Get PDF
    J. H. Burns was omitted in error from the author list of the original version of this Data Descriptor. This omission has now been corrected in both the HTML and PDF versions

    Ecosystem size matters: the dimensionality of intralacustrine diversification in Icelandic stickleback is predicted by lake size

    Get PDF
    Cases of evolutionary diversification can be characterized along a continuum from weak to strong genetic and phenotypic differentiation. Several factors may facilitate or constrain the differentiation process. Comparative analyses of replicates of the same taxon at different stages of differentiation can be useful to identify these factors. We estimated the number of distinct phenotypic groups in three-spine stickleback populations from nine lakes in Iceland and in one marine population. Using the inferred number of phenotypic groups in each lake, genetic divergence from the marine population, and physical lake and landscape variables, we tested whether ecosystem size, approximated by lake size and depth, or isolation from the ancestral marine gene pool predicts the occurrence and the extent of phenotypic and genetic diversification within lakes. We find intralacustrine phenotypic diversification to be the rule rather than the exception, occurring in all but the youngest lake population and being manifest in ecologically important phenotypic traits. Neutral genetic data further indicate nonrandom mating in four of nine studied lakes, and restricted gene flow between sympatric phenotypic groups in two. Although neither the phenotypic variation nor the number of intralacustrine phenotypic groups was associated with any of our environmental variables, the number of phenotypic traits that were differentiated was significantly positively related to lake size, and evidence for restricted gene flow between sympatric phenotypic groups was only found in the largest lakes where trait specific phenotypic differentiation was highest

    Ecological speciation in European whitefish is driven by a large-gaped predator

    Get PDF
    Lake-dwelling fish that form species pairs/flocks characterized by body size divergence are important model systems for speciation research. Although several sources of divergent selection have been identified in these systems, their importance for driving the speciation process remains elusive. A major problem is that in retrospect, we cannot distinguish selection pressures that initiated divergence from those acting later in the process. To address this issue, we studied the initial stages of speciation in European whitefish (Coregonus lavaretus) using data from 358 populations of varying age (26-10,000 years). We find that whitefish speciation is driven by a large-growing predator, the northern pike (Esox lucius). Pike initiates divergence by causing a largely plastic differentiation into benthic giants and pelagic dwarfs: ecotypes that will subsequently develop partial reproductive isolation and heritable differences in gill raker number. Using an eco-evolutionary model, we demonstrate how pike's habitat specificity and large gape size are critical for imposing a between-habitat trade-off, causing prey to mature in a safer place or at a safer size. Thereby, we propose a novel mechanism for how predators may cause dwarf/giant speciation in lake-dwelling fish species.Peer reviewe

    Land Use and Pollinator Dependency Drives Global Patterns of Pollen Limitation in the Anthropocene

    Get PDF
    Land use change, by disrupting the co-evolved interactions between plants and their pollinators, could be causing plant reproduction to be limited by pollen supply. Using a phylogenetically controlled meta-analysis on over 2200 experimental studies and more than 1200 wild plants, we ask if land use intensification is causing plant reproduction to be pollen limited at global scales. Here we report that plants reliant on pollinators in urban settings are more pollen limited than similarly pollinator-reliant plants in other landscapes. Plants functionally specialized on bee pollinators are more pollen limited in natural than managed vegetation, but the reverse is true for plants pollinated exclusively by a non-bee functional group or those pollinated by multiple functional groups. Plants ecologically specialized on a single pollinator taxon were extremely pollen limited across land use types. These results suggest that while urbanization intensifies pollen limitation, ecologically and functionally specialized plants are at risk of pollen limitation across land use categories

    Edge-Related Loss of Tree Phylogenetic Diversity in the Severely Fragmented Brazilian Atlantic Forest

    Get PDF
    Deforestation and forest fragmentation are known major causes of nonrandom extinction, but there is no information about their impact on the phylogenetic diversity of the remaining species assemblages. Using a large vegetation dataset from an old hyper-fragmented landscape in the Brazilian Atlantic rainforest we assess whether the local extirpation of tree species and functional impoverishment of tree assemblages reduce the phylogenetic diversity of the remaining tree assemblages. We detected a significant loss of tree phylogenetic diversity in forest edges, but not in core areas of small (<80 ha) forest fragments. This was attributed to a reduction of 11% in the average phylogenetic distance between any two randomly chosen individuals from forest edges; an increase of 17% in the average phylogenetic distance to closest non-conspecific relative for each individual in forest edges; and to the potential manifestation of late edge effects in the core areas of small forest remnants. We found no evidence supporting fragmentation-induced phylogenetic clustering or evenness. This could be explained by the low phylogenetic conservatism of key life-history traits corresponding to vulnerable species. Edge effects must be reduced to effectively protect tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest

    Converting Endangered Species Categories to Probabilities of Extinction for Phylogenetic Conservation Prioritization

    Get PDF
    Categories of imperilment like the global IUCN Red List have been transformed to probabilities of extinction and used to rank species by the amount of imperiled evolutionary history they represent (e.g. by the Edge of Existence programme). We investigate the stability of such lists when ranks are converted to probabilities of extinction under different scenarios.Using a simple example and computer simulation, we show that preserving the categories when converting such list designations to probabilities of extinction does not guarantee the stability of the resulting lists.Care must be taken when choosing a suitable transformation, especially if conservation dollars are allocated to species in a ranked fashion. We advocate routine sensitivity analyses

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Glopl, a global data base on pollen limitation of plant reproduction

    Get PDF
    Plant reproduction relies on transfer of pollen from anthers to stigmas, and the majority of flowering plants depend on biotic or abiotic agents for this transfer. A key metric for characterizing if pollen receipt is insufficient for reproduction is pollen limitation, which is assessed by pollen supplementation experiments. In a pollen supplementation experiment, fruit or seed production by flowers exposed to natural pollination is compared to that following hand pollination either by pollen supplementation (i.e. manual outcross pollen addition without bagging) or manual outcrossing of bagged flowers, which excludes natural pollination. The GloPL database brings together data from 2969 unique pollen supplementation experiments reported in 927 publications published from 1981 to 2015, allowing assessment of the strength and variability of pollen limitation in 1265 wild plant species across all biomes and geographic regions globally. The GloPL database will be updated and curated with the aim of enabling the continued study of pollen limitation in natural ecosystems and highlighting significant gaps in our understanding of pollen limitation.<p>Correction in: Scientific Data, vol. 6, article number: 2. DOI: 10.1038/s41597-018-0006-1</p
    corecore