3,038 research outputs found

    Status of the Optical Multiplexer Board 9U Prototype

    Get PDF
    This paper presents the architecture and the status of the Optical Multiplexer Board (OMB) 9U for the ATLAS/LHC Tile hadronic calorimeter (TileCal). This board will analyze the front-end data CRC to prevent bit and burst errors produced by radiation. Besides, due to its position within the data acquisition chain it will be used to emulate front-end data for tests. The first two prototypes of the final OMB 9U version have been produced at CERN. Detailed design issues and manufacture features of these prototypes are described. Functional descriptions of the board on its two main operation modes as CRC checking and data ROD injector are explained as well as other functionalities. Finally, the schedule for next year when the production of the OMB will be take place is also presented

    A Complete Set of Firmware for the TileCal Read-Out Driver

    Get PDF
    TileCal is the hadronic tile calorimeter of the ATLAS experiment at LHC/CERN. The Read-Out Driver (ROD) is the main component of the TileCal back-end electronics. The ROD is a VME 64x 9u board with multiple programmable devices which requires a complete set of firmware. This paper describes the firmware and functionalities of all these programmable devices, especially the DSP Processing Units daughterboards where the data processing takes place

    On the development of the final optical multiplexer board prototype for the TileCal experiment

    Get PDF
    This paper describes the architecture of the final optical multiplexer board for the TileCal experiment. The results of the first VME 6U prototype have led to the definition of the final block diagram and functionality of this prototype. Functional description of constituent blocks and the state of the work currently undergoing at the Department of Electronic Engineering, in collaboration with IFIC-Valencia, is presented. As no board is yet produced, no experimental results are presented but, nevertheless, design issues that have been taking into account as component placement and signal integrity issues will be detailed

    Optical Buffer 1:16

    Get PDF
    This document is a manual describing the functionality and the operation of the Optical Buffer 1:16 (OB). The OB was specially designed to repeat optical signals during the TileCal Read-Out drivers (ROD) production. The data generated in one Optical Multiplexer Board (OMB) 6U prototypes were repeated with two OB in order to inject data simultaneously to four RODs

    Setup, tests and results for the ATLAS TileCal Read Out Driver production

    Get PDF
    In this paper we describe the performance and test results of the production of the 38 ATLAS TileCal Read Out Drivers (RODs). We first describe the basic hardware specifications and firmware functionality of the modules, the test-bench setup used for production and the test procedure to qualify the boards. We then finally show and discuss the performance results

    Monte Carlo Performance of the TileCal Low pT Muon Identification Algorithm

    Get PDF
    This note describes the TileCal standalone low pT muon identification algorithm (TileMuId) developed to contribute to the Level-2 trigger. This algorithm is based on the characteristic muon energy deposition inside the calorimeter. The implementation of this algorithm in the core of the Digital Signal Processors (DSPs) in the TileCal Read-Out Drivers (RODs) is also discussed in this paper. The TileMuId performance with Monte Carlo data from single muons and bb events is shown in terms of efficiencies and fraction of fakes for both a fully Level-2 version and a ROD-based version of the algorithm

    A Measurement of B Meson Production and Lifetime Using D`− Events in Z0 Decays

    Get PDF
    A study of B meson decays into D l- X final states is presented. In these events, neutral and charged D mesons originate predominantly from B+ and B0 decays, respectively. The dilution of this correlation due to D** production has been taken into account. From 263700 hadronic Z0 decays collected in 1991 with the DELPHI detector at the LEP collider, 92 D0 --> K- pi+, 35 D+ --> K- pi+ pi+ and 61 D*+ --> D0 pi+ followed by D0 --> K- pi+ or D0 --> K- pi+ pi+ pi-, are found with an associated lepton of the same charge as the kaon. From the D0 l- and D*+ l-, the probability f(d) that a b quark hadronizes into a B- (or B0BAR),meson is found to be 0.44 +/-0.08 +/-0.09, corresponding to a total (B(s) + LAMBDA(b)) hadronization fraction of 0.12(-0.12)+0.24 .By reconstructing the energy of each B meson, the b quark fragmentation is directly measured for the first time. The mean value of the B meson energy fraction is: [X(E)(B)] = 0.695+/-0.015(stat.)+/-0.029(syst.) Reconstructing D-lepton vertices, the following B life-times are measured: tau(B) = 1.27(-0.18)+0.22(stat.)+/-0.15(syst.) ps, where bBAR --> D0 l- X, tau(B) = 1.18(-0.27)+0.39(stat.)+/-0.15(syst.) ps, where BBAR --> D+ l- X, T(B) = 1.19(-0.19)+0.25(stat.)+/-0.15(syst.) ps where BBAR --> D*+ l- X, and an average tau(B) = 1.23(-0.13)+0.14(stat.)+/-0.15(syst.) ps is found. Allowing for decays into D** l- vBAR, the B+ and B0 lifetimes are: tau(B+)= 1.30(0.29)+0.33(stat.)+/-0.15(syst. exp.) +/-0.05(syst. D**) ps, tau(B0)= 1.17(-0.23)+0.29(stat.)+/-0.15(syst. exp.) +/-0.05 (syst. D**) ps, tau(B+)/tau(B0) = 1.11(0.39)+0.51(stat.)+/-0.05(syst. exp.) +/-0.10(syst. D**) ps

    Measurement of the triple-gluon vertex from 4-JET events at LEP

    Get PDF
    From the combined data of 1990 and 1991 of the DELPHI experiment at LEP, 13057 4-jet events are obtained and used for determining the contribution of the triple-gluon vertex. The relevant variables are the generalized Nachtmann Reiter angle theta(NR)* and the opening angle of the two least energetic jets. A fit to their two-dimensional distribution yields C(A)/C(F)=2.12+/-0.35 and N(C)/N(A)=0.46+/-0.19, where C(A)/C(F) is the ratio of the coupling strength of the triple-gluon vertex to that of gluon bremsstrahlung from quarks, and N(C)/N(A), the ratio of the number of quark colours to the number of gluons. This constitutes a convincing model-independent proof of the existence of the triple-gluon vertex, since its contribution is directly proportional to C(A)/C(F). The results are in agreement with the values expected from QCD: C(A)/C(F)=2.25, and N(C)/N(A)=3/8

    Effect of the haematocrit layer geometry on Plasmodium falciparum static thin-layer in vitro cultures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>In vitro </it>cultivation of <it>Plasmodium falciparum </it>is usually carried out through the continuous preservation of infected erythrocytes deposited in static thin layers of settled haematocrit. This technique, called the candle-jar method, was first achieved by Trager and Jensen in 1976 and has undergone slight modifications since then. However, no systematic studies concerning the geometry of the haematocrit layer have been carried out. In this work, a thorough investigation of the effects of the geometric culturing conditions on the parasite's development is presented.</p> <p>Methods</p> <p>Several experimental trials exploring different settings have been carried out, covering haematocrit layer depths that ranged from 6 mm to 3 mm and separation between the walls of the culturing device that ranged from 7.5 mm to 9 mm. The obtained results have been analysed and compared to different system-level models and to an Individual-Based Model.</p> <p>Conclusion</p> <p>In line with the results, a mechanism governing the propagation of the infection which limits it to the vicinity of the interface between the haematocrit layer and the culture medium is deduced, and the most appropriate configurations are proposed for further experimental assays.</p

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal
    • 

    corecore