958 research outputs found

    The role of block shape and slenderness in the preliminary estimation of rockfall propagation

    Get PDF
    Among the wide range of variables that influence the falling process of blocks during a rockfall event, the shape of the block often plays a crucial role. Spherical-like blocks typically reach longer runout distances while elongated and plate volumes stop earlier. Nevertheless, with reference to runout modelling and hazard analyses, the shape of the block was disregarded for very long time until the last two decades when more rigorous rockfall models were developed. Nowadays fully 3D rigid body models and particle-based ones can take into account different and complex aspects related to block geometry and size (e.g. shape, change of shape, slenderness, fragmentation, etc.) when in site-specific applications are addressed. On the other hand, when the rockfall analysis is extended over large areas, simplified runout models can be used for preliminary, quick analyses, aimed at highlighting the most critical zones of the area. In this case, the variables that influence the rockfall process should be included in the analysis in equivalent terms. Among these simplified models, the Cone Method allows to reduce the runout phase to an equivalent sliding motion of the block along an inclined plane. The inclination of this plane with respect to the horizontal plane (i.e. the energy angle ) can be related to both block and slope properties of the real rockfall case. The authors of this paper developed a methodology for the estimation of the energy angle as a function of the condition of the site under analysis (characteristics of the blocks and the slope), to be used for preliminary forecasting analyses at medium-small scales. To this aim, a series of parametric analyses have been carried out to quantify the role of each variable on the energy angle. In this paper, the role of block shape and slenderness (i.e. the ratio between the height and the width of the rock block) is analysed via several propagation analyses carried out on simplified synthetic slopes by using the fully 3D RAMMS::ROCKFALL model. The results were finally statistically treated in terms of energy angles in order to take into account the variability of rockfall trajectories and provide a contribution for the estimation of the parameters within preliminary analyses based on the Cone Method

    Recommendation Systems in Libraries: an Application with Heterogeneous Data Sources

    Get PDF
    The Reading[&]Machine project exploits the support of digitalization to increase the attractiveness of libraries and improve the users’ experience. The project implements an application that helps the users in their decision-making process, providing recommendation system (RecSys)-generated lists of books the users might be interested in, and showing them through an interactive Virtual Reality (VR)-based Graphical User Interface (GUI). In this paper, we focus on the design and testing of the recommendation system, employing data about all users’ loans over the past 9 years from the network of libraries located in Turin, Italy. In addition, we use data collected by the Anobii online social community of readers, who share their feedback and additional information about books they read. Armed with this heterogeneous data, we build and evaluate Content Based (CB) and Collaborative Filtering (CF) approaches. Our results show that the CF outperforms the CB approach, improving by up to 47% the relevant recommendations provided to a reader. However, the performance of the CB approach is heavily dependent on the number of books the reader has already read, and it can work even better than CF for users with a large history. Finally, our evaluations highlight that the performances of both approaches are significantly improved if the system integrates and leverages the information from the Anobii dataset, which allows us to include more user readings (for CF) and richer book metadata (for CB)

    Cross-Layer Early Reliability Evaluation for the Computing cOntinuum

    Get PDF
    Advanced multifunctional computing systems realized in forthcoming technologies hold the promise of a significant increase of the computational capability that will offer end-users ever improving services and functionalities (e.g., next generation mobile devices, cloud services, etc.). However, the same path that is leading technologies toward these remarkable achievements is also making electronic devices increasingly unreliable, posing a threat to our society that is depending on the ICT in every aspect of human activities. Reliability of electronic systems is therefore a key challenge for the whole ICT technology and must be guaranteed without penalizing or slowing down the characteristics of the final products. CLERECO EU FP7 (GA No. 611404) research project addresses early accurate reliability evaluation and efficient exploitation of reliability at different design phases, since these aspects are two of the most important and challenging tasks toward this goal

    Early Component-Based System Reliability Analysis for Approximate Computing Systems

    Get PDF
    A key enabler of real applications on approximate computing systems is the availability of instruments to analyze system reliability, early in the design cycle. Accurately measuring the impact on system reliability of any change in the technology, circuits, microarchitecture and software is most of the time a multi-team multi-objective problem and reliability must be traded off against other crucial design attributes (or objectives) such as power, performance and cost. Unfortunately, tools and models for cross-layer reliability analysis are still at their early stages compared to other very mature design tools and this represents a major issue for mainstream applications. This paper presents preliminary information on a cross-layer framework built on top of a Bayesian model designed to perform component-based reliability analysis of complex systems

    Improvements of LHC data analysis techniques at Italian WLCG sites. Case-study of the transfer of this technology to other research areas

    Get PDF
    In 2012, 14 Italian institutions participating in LHC Experiments won a grant from the Italian Ministry of Research (MIUR), with the aim of optimising analysis activities, and in general the Tier2/Tier3 infrastructure. We report on the activities being researched upon, on the considerable improvement in the ease of access to resources by physicists, also those with no specific computing interests. We focused on items like distributed storage federations, access to batch-like facilities, provisioning of user interfaces on demand and cloud systems. R&D on next-generation databases, distributed analysis interfaces, and new computing architectures was also carried on. The project, ending in the first months of 2016, will produce a white paper with recommendations on best practices for data-analysis support by computing centers

    Charge separation relative to the reaction plane in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}}= 2.76 TeV

    Get PDF
    Measurements of charge dependent azimuthal correlations with the ALICE detector at the LHC are reported for Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV. Two- and three-particle charge-dependent azimuthal correlations in the pseudo-rapidity range η<0.8|\eta| < 0.8 are presented as a function of the collision centrality, particle separation in pseudo-rapidity, and transverse momentum. A clear signal compatible with a charge-dependent separation relative to the reaction plane is observed, which shows little or no collision energy dependence when compared to measurements at RHIC energies. This provides a new insight for understanding the nature of the charge dependent azimuthal correlations observed at RHIC and LHC energies.Comment: 12 pages, 3 captioned figures, authors from page 2 to 6, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/286

    A note on comonotonicity and positivity of the control components of decoupled quadratic FBSDE

    Get PDF
    In this small note we are concerned with the solution of Forward-Backward Stochastic Differential Equations (FBSDE) with drivers that grow quadratically in the control component (quadratic growth FBSDE or qgFBSDE). The main theorem is a comparison result that allows comparing componentwise the signs of the control processes of two different qgFBSDE. As a byproduct one obtains conditions that allow establishing the positivity of the control process.Comment: accepted for publicatio

    Transverse sphericity of primary charged particles in minimum bias proton-proton collisions at s=0.9\sqrt{s}=0.9, 2.76 and 7 TeV

    Get PDF
    Measurements of the sphericity of primary charged particles in minimum bias proton--proton collisions at s=0.9\sqrt{s}=0.9, 2.76 and 7 TeV with the ALICE detector at the LHC are presented. The observable is linearized to be collinear safe and is measured in the plane perpendicular to the beam direction using primary charged tracks with pT0.5p_{\rm T}\geq0.5 GeV/c in η0.8|\eta|\leq0.8. The mean sphericity as a function of the charged particle multiplicity at mid-rapidity (NchN_{\rm ch}) is reported for events with different pTp_{\rm T} scales ("soft" and "hard") defined by the transverse momentum of the leading particle. In addition, the mean charged particle transverse momentum versus multiplicity is presented for the different event classes, and the sphericity distributions in bins of multiplicity are presented. The data are compared with calculations of standard Monte Carlo event generators. The transverse sphericity is found to grow with multiplicity at all collision energies, with a steeper rise at low NchN_{\rm ch}, whereas the event generators show the opposite tendency. The combined study of the sphericity and the mean pTp_{\rm T} with multiplicity indicates that most of the tested event generators produce events with higher multiplicity by generating more back-to-back jets resulting in decreased sphericity (and isotropy). The PYTHIA6 generator with tune PERUGIA-2011 exhibits a noticeable improvement in describing the data, compared to the other tested generators.Comment: 21 pages, 9 captioned figures, 3 tables, authors from page 16, published version, figures from http://aliceinfo.cern.ch/ArtSubmission/node/308
    corecore