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Abstract—The adoption of base station sleep modes is consid-
ered one of the most effective approaches for the reduction of
the energy consumption of radio access networks. Sleep modes
allow the switch-off of base stations in periods of low traffic, and
their successive switch-on when traffic increases. The selection
of the appropriate instants to switch base stations on and off
requires an accurate prediction of the traffic loads in the near
future. In this paper we explore the performance of machine
learning techniques for traffic prediction and for the selection of
the instants when to switch off and on base stations, considering
a heterogeneous network portion comprising one macro cell and
six small cells within the macro cell coverage. We experiment
with two machine learning approaches. The first aims at short
term traffic load estimation, and from this derives the best
combination of switching decisions. The second performs both
traffic estimation and switching optimization at one time. For
both approaches we develop artificial neural network implemen-
tations based on the Dense Neural Network and Recurrent Neural
Network paradigms. Testing the two approaches on real traffic
data, we observe very good performance in terms of both quality
of service and energy saving.

Index Terms—Cellular Base Station Switching; Machine
Learning; Recurrent Neural Networks

I. INTRODUCTION

Green networking, or energy efficient networking, has been
a hot research topic for over 15 years, since the publication
of the paper by Gupta and Singh at Sigcomm 2003 [1].
The intense research that followed targeted the design of
energy-parsimonious approaches for both wired and wireless
networks. In the case of wireless networks, base stations (BSs)
were identified as the main source of energy consumption in
radio access networks (RANs), and the introduction of sleep
modes to switch off BSs in periods of low traffic, and switch
them on again when traffic increases, was identified as the
most effective approach to save energy. Surveys of the many
proposals in this domain can be found, e.g., in [2]–[4].

The relevance of BS sleep modes is bound to increase:
the yearly measurements and forecasts of the Cisco Visual
Networking Index [5], [6] point out that the amount of traffic
per smartphone per month has risen 38% from 2015 to 2016.
In 2022, mobile data will amount to 71 percent of the total IP
traffic. What is most relevant for sleep modes is the fact that
the discrepancy between idle and busy hours is growing: the
traffic in the busy hour is expected to increase by a factor 4.8
between 2017 and 2022, while the daily traffic is forecast to
increase by a factor 3.7.

In spite of this, mobile network operators (MNOs) have
been reluctant to introduce BS sleep modes in their network
management algorithms, because most of the research propos-

als assume that the traffic load pattern along time is exactly
known (see e.g., [7]), and MNOs fear that errors in traffic
estimation can lead to poor quality of service (QoS). This
makes the accurate short term prediction of traffic an extremely
important prerequisite for the adoption of BS sleep modes.

MNOs collect traffic patterns at the BSs of their RAN over
long time periods, in order to be able to make wise choices
about network upgrades and new technologies introduction.
Traffic prediction can thus exploit these time series, and, given
the traffic load behavior up to a recent time instant, try to
predict the traffic load over a short time interval, and decide
whether some BSs should be put to sleep according to the
traffic forecast.

In this paper we exploit artificial neural networks (ANNs)
for short term traffic prediction, and we investigate their
accuracy in a heterogeneous network scenario comprising one
macro BS that gives origin to one macro cell within which
6 micro BSs define 6 small cells whose purpose is to handle
traffic hot spots. These 6 micro BSs can be switched on and
off according to the level of traffic demand.

The rest of this paper is organized as follows. Section II
explains in more detail the issues in BS switching. Section III
provides information about the RAN scenario that we consider,
the available data, the energy consumption model, and defines
the optimization problem of BS switching. Section IV contains
a detailed explanation of the machine learning approaches that
are tested as a solution to the problem. Section V presents
numerical results, and finally Section VI concludes the paper.

II. BASE STATION SLEEP MODES

BS sleep modes are a very promising approach that comes
with some implementation issues. One problem, that is typical
of the case of a single tier BS coverage, is the risk of coverage
holes. Indeed, in spite of partial overlaps of cells, it is possible
that when a BS is switched off, some area is excluded from
service. This hindrance does not appear in new generation
RANs that are implemented with a collection of technology
generations creating cells of different sizes and capacities. In
these new RANs, hierarchies of cells exist, and form dense and
heterogeneous networks (HetNets) in which larger Macro Base
Stations (MBSs) overlap with Small cell Base Stations (SBSs).
In dense urban areas it is expected that high capacity scenarios
can be achieved through extreme BS densification [8]. In
such cases, switching off an underutilized SBS contributes
only in the decrease of serviceable capacity, as the traffic that
cannot be served by the SBS can be forwarded to the MBS.
If planned well, a SBS shut-off lowers the energy spending



Fig. 1: The considered HetNet scenario

whilst keeping network operation nominal. This makes sleep
modes particularly well suited to dense RANs [9].

Many suggested implementations [9] recognize a plethora
of culprits for the complexity of BS switching. Our work
recognizes the issue of switching aversion, a consequence of
the proneness of current equipment to failure when switched
very often. This deters MNOs to commit to a switch decision,
unless confident that the BS’s service will not be needed for
at least one hour. For such guarantee to be provided, prior
knowledge of the future traffic demand, and accurate traffic
estimation, are essential, hence an advanced understanding
of the areas service history and a good estimation tool are
necessary. In addition to estimation, the optimization problem
for deciding the most efficient combination of switched off
BSs needs to be solved. A problem which is easy to solve
for small numbers of BSs, but can become difficult when the
number of BSs is large.

To address both estimation and optimization at once re-
quires a robust algorithm such as offered by machine learning
(ML) algorithms. More specifically, Artificial Neural Networks
(ANNs) are interesting as a very powerful tool for solving
complex problems. Previous results in the literature include
a very simple case of optimization [10], as well as a case
where data caching at BS is assumed [11]. In comparison
to the aforementioned cases, our work focuses only on the
switching aversion as an issue; which narrows the applicable
ANN models to the ones analyzed in Section IV.

III. THE SCENARIO

We consider a portion of a HetNet comprising one MBS and
six SBSs within the MBS coverage, as illustrated in Figure 1.

A. The traffic data

This work uses real traffic data that is provided in confiden-
tiality by an Italian MNO. Within the provided data, Internet
traffic overwhelms the other services in terms of load, ergo it
is considered central to the analysis. To describe the spatial
distribution of traffic, data volumes are reported for 1419
rectangular areas of variable size covering the metropolitan
area of the city of Milan, as shown in Fig. 2. From here on,
each rectangular area will be referred to as a BS, and a group
of seven neighboring areas where one is chosen to be the MBS
will be referred as a “scenario”.

Fig. 2: The rectangular areas in the Milan metropolitan area
that are taken as cellular base stations

The traffic data spans exactly two months from March 1st
2015 to April 30th 2015. The time granularity of the available
data corresponds to 15-minute time slots. For the purpose of
this research, in order to avoid switching BSs too often, data
is aggregated to a granularity of sixty minutes and switching
is allowed at the beginning of every hour.

The available data allows testing in different scenarios based
on human activity: business, industrial and residential; or
based on significant local infrastructure: the San Siro football
stadium, highway sections, and popular touristic areas such
as the Duomo of Milan. Additionally, the available two-
month period offers diversity in the analysis as it includes
two irregular phenomena: Catholic Easter and beginning of
Daylight Saving Time. Overall, the available data comprises
24 · 61− 1 = 1463 time slots for each of the 1419 BSs.

B. Energy Consumption Model

To describe the energy consumption of a BS, we use the
standard linear model proposed in [12]. The BS energy con-
sumption can be mainly accredited to the power amplifier, the
RF transceiver, the baseband processor, the DC-DC converter,
the cooling, and the AC/DC power supply. By computing
the impact of each element on the BS consumption, the
model separates the load independent elements from the load
dependent ones. The load dependency mainly amounts to the
power amplifier element in each transceiver, that behaves in
a near linear fashion. Finally, the total BS consumption is
obtained by accounting for the number of transceivers on the
BS. As a result, the total input power needed at the BS is:

Pin =

{
NTRX

(
P0 + ∆p Pout

)
, 0 < Pout ≤ Pmax

NTRX Psleep, Pout = 0
(1)

where Pout is defined as:

Pout = ρ Pmax, 0 ≤ ρ ≤ 1 (2)

and where NTRX is the number of transceivers on the BS;
P0 is the idle power consumption per transceiver; ∆p is the
slope of the load dependent elements; Pout is the instantaneous
transmission power of the transceiver; Pmax is the maximum
possible transmission power of a transceiver; ρ is the BS traffic



Fig. 3: The architecture of the Dense Neural Network for Two-
Step-DNN

load normalized to 1; Psleep is the amount of energy spent in
sleep mode, which we assume negligible.

The problem of BS switching in the case of one MBS and
Ns SBSs simplifies to turning off SBSs that have load ρi less
than a predefined constant T while not exceeding the total
traffic supported by the MBS ρM to which the load ρi is
transferred. This is expressed in the following optimization
problem where τi is the trigger for MBS i, taking values 0 for
OFF or 1 for ON [15].

Maximize:
Ns∑
i=1

τi
[
ρi − T

]
(3)

Subject to:

ρM +
∑Ns

i=1 ρi
(
1− τi

)
≤ 1

0 ≤ ρM ≤ 1
0 ≤ ρi ≤ T, i ∈ 1, 2, 3, ...Ns

τi ∈ {0, 1} i ∈ 1, 2, 3, ...Ns

(4)

IV. NEURAL NETWORKS FOR BASE STATION SWITCHING

In the investigated context, any proposed solution must
estimate the traffic at the next time slot (the next hour) as well
as decide the best switching combination as in the optimization
problem presented in Section III. Furthermore, given the
limited amount of available data, the estimation can only be
short term. Considering the available options, we decided to
experiment with two ML approaches. In the first case, the ML
algorithm outputs the estimated traffic demand samples, which
are used to take switching decisions (two-step approaches). In
the second case, the ML algorithm performs both estimation
and switching decisions together (unified approaches): the
output of the ANNs is the configuration of the RAN. For both
types of approaches, two types of ANNs were tested, Dense
Neural Networks and Recurrent Neural Networks, resulting in
a total of 4 solutions, that we further explain in the subsections
that follow.

A. Dense Neural Networks for Estimation (Two-Step-DNN)

When using a DNN for estimation, a single ANN is trained
to estimate the traffic demand of the considered portion of a
HetNet composed by one MBS and 6 MBSs.

Fig. 4: The unwrapped form of the Recurrent Neural Network
for Two-Step-RNN

In this case, the ANN receives as input the past traffic
demand on a given BS at times t − 1, t − 24, t − 1 − 24,
t − 2 · 24, t − 1 − 2 · 24 and provides as output the forecast
traffic demand at time t on that BS.

We decided to use these five features as input, since we
expect them to be sufficient to provide reliable estimates
without risking overfitting the model by inputting too much
information [13]. The architecture consists of an input layer,
two hidden layers, and a single output neuron layer, as shown
in Fig. 3. Each neuron is activated by a sigmoid function,
with the exception of the last output neuron which is left
unrestricted. As a standard procedure, back-propagation of a
gradient descent optimizer is used for training, and the squared
difference in cost between the estimate and the desired output
is taken as the error.

B. Recurrent Neural Networks for Estimation (Two-Step-RNN)

In this case, a single model is employed as a Milan-wide
estimator as it is trained on all areas. A three dimensional
matrix is fed as input, whose size is computed as [batch-
size · number-of-batches, sequence-length, feature-size]. The
first value of batch-size · number-of-batches is generally vari-
able, to allow for flexibility during training, while the sequence
length and the feature size define the architecture of the RNN.
The sequence length is set to 50, aiming to fit each consecutive
time slot in the past, up to the one where estimation is needed;
this makes the oldest value at the RNN input the same as
in the DNN above [13]. As the feature-size is inherently 1,
the load of the BS we are estimating, the final matrix has a
size of [·, 50, 1], leading to the architecture shown in Fig, 4.
This architecture is created by passing the mentioned matrix
through a two-layered LSTM or GRU cells with size 200,
where the output of each cell from the second layer is tied to
an output neuron deciding the final value.

The internal states of the RNN start with an input of all
zeros in state 0 and ends with state 1. The output state is non-
zero and carries useful information. Even though sequence-
length is a finite number, state 1 can be exploited by imple-
menting a fully tied state passing mechanism to pass some
information through the RNN indefinitely. However, such
approach of state linking follows very strict rules regarding
batching, where every new batch must be the next-in-line for
estimation.



In more detail, when training with batch number i, we
save the corresponding output state state i. This state i is
then used as input (the state 0) of the next batch i + 1. The
next in line training batch i+ 1 will be able to utilize state i
as a starting non-zero state leading to better estimations for
the output value. However, this does not guarantee that each
passed state is fully useful indefinitely. Unfortunately, it cannot
carry information about a phenomenon for which it has not
been trained within the band of 50 sequential inputs that are
given to the RNN at each step.

C. Dense Neural Networks for Full Decision (Unified-DNN)

The simultaneous traffic estimation and switching decision
is an inherently more complex problem than only estimation.
Hence, a more careful approach is taken towards both the
architecture of the ANN and the data feeding it.

In this case, a single model is trained to get the configuration
of the cluster. When the configuration of the network at time
t is estimated, the machine receives as inputs the past traffic
demand and the status (ON/OFF) at t− 1, t− 24, t− 1− 24,
t− 2 · 24, t− 1− 2 · 24, of each SBS. In addition, the traffic
demands at t− 1, t− 24, t− 1− 24, t− 2 · 24, t− 1− 2 · 24,
of the MBS are also used as input features.

The internal network consists of 3 hidden layers with 65
neurons each; in this way we try to obtain a balance between
the power of the network and the time to convergence towards
usable results. The final output layer consists of twelve output
neurons. Each neuron is used to express the certainty of the
DNN in deciding towards a switching decision. If output Oi

has larger value than output Oi+6, the SBS i will be kept on.
Otherwise, it will be turned off, as shown in (5), where the
value th is an offset which allows to induce a bias towards
keeping the SBS, on or turning it off.

SBSi =

{
ON, Oi ≥ Oi+6 − th
OFF, Oi < Oi+6 − th

(5)

D. Recurrent Neural Networks for Full Decision (Unified-
RNN)

This unified solution is a slight modification of the RNN
used for estimation, with the difference that it is capable to
decide if a SBS needs to be turned off or kept on. It was
implemented with input dimensions of [·, 50, 7], because each
element in the sequence-length of 50 comprises 7 features for
the load of each BS in a network scenario. The output consist
of 12 neurons to present the best switching optimization, like
in the Unified-DNN implementation. Finally, as in Unified-
DNN, the main expected benefit of using a unitary solution is
the possibility of scaling the output as in (5), by manipulating
th.

V. TESTING AND RESULTS

For each BS, the available data was divided in two parts
which were never mixed: the first 1127 timeslots were used
for training, and the final 336 hours for testing. In addition
to the use of Dropout [14], overfitting was carefully avoided

Fig. 5: The location of the 11 tested scenarios

by following the evolution of the performance metrics during
training, when fed with both the training and the testing sets.
The testing was done on chosen scenarios where the number
of SBSs under one MBS is 6. As congested areas are of
the highest interest 11 different scenarios in the metropolitan
area were considered: Residential (a residential area in the
south-west), Business (a business area near the city center),
Polimi (the “Politecnico di Milano”), Highway (a busy section
of the south-western highway), FS (the main railway station
“Milano Centrale”), San Siro (the occasionally very busy
football stadium of San Siro), Residential2 (a residential area
in the north), Duomo (the city center), Industrial (a central
industrial neighbourhood), Linate (the Linate airport), and Rho
(the Rho neighbourhood); all highlighted in Figure 5.

The key metrics for measuring the performance of all
solutions are lost coverage and lost potential efficiency. The
lost coverage, denoted with CL, measures the percentage of
available traffic that is lost due to SBS in sleep mode. The
lost potential efficiency EL measures the percentage of extra
energy spent relative to the whole potential energy saving in
the optimal scenario. Note that the EL = 0 is not an asymptote
of the system, because losses in coverage can lead to better
than ideal energy efficiency resulting in negative numbers for
EL.

Note that the available BS capacity is such that an opti-
mization algorithm fed with all past and future data would
be able to achieve CL = EL = 0. In the case of realistic
assumptions, the quality of an algorithm is measured by the
values achieved by CL and EL. Note however that, since our
goal is to provide the best possible energy efficiency while not
significantly affecting the QoS in the area, we strive to first
achieve very low values for CL.

A. Testing Two-Step Solutions

We first test the performance of the two-step solutions,
where an ANN is only used for traffic estimation, and switch-
ing decisions are optimally derived from the ANN estimations,
using the optimization problem in (3).

The application of the Two-Step-DNN to our traffic data
for each of the 11 scenarios provides the results shown in



Fig. 6: The performance of the Two-Step-DNN implementa-
tion for each of the 11 tested scenarios

Fig. 7: The performance of the Two-Step-RNN implementa-
tion for each of the 11 tested scenarios

Fig. 6. We can see that the area with the lowest CL is the
scenario over the main train station of Milan (labeled FS),
which exhibits a very regular traffic pattern, so that predictions
are easier. Whether this value is acceptable depends on the
MNO policies, but in general we aim at lost coverage values
lower that 0.1 %, even sacrificing somewhat the lost potential
efficiency. The overall average performance metrics obtained
with the Two-Step-DNN, considering all 11 scenarios, are
EL = 1.58, CL = 1.03. We point out that the scenarios where
performance is worse are Rho, Linate and San Siro, since their
traffic pattern is irregular.

The application of the Two-Step-RNN yields the perfor-
mance values presented in Fig. 7. The overall averages of
the two performance metrics are: EL = 1.24, CL = 0.84.
These two values represent the closest pair to the (0,0) point
achieved in our study. In all scenarios the energy efficiency
loss is always below 3.5%, while the lost coverage varies
between 0.47% and 1.23%. Also in this case, the three worst
performing scenarios are San Siro, Linate and Rho.

B. Testing Unified Solutions

The main expected benefit of using unitary solutions is the
possibility of considering the output directly as switching de-
cisions. In addition, these solutions allow the use of the offset
th to drive the final performance of the switching scheme.
Note that in Figures 8 and 9 column numbers correspond to: 1

Fig. 8: The performance of the Unified-DNN implementation
for each of the 11 tested scenarios, for each threshold setting
from 0 to 0.9

Residential, 2 Business, 3 Polimi, 4 Highway, 5 FS, 6 SanSiro,
7 Residential2, 8 Duomo, 9 Industrial, 10 Linate and 11 Rho.

Fig. 8 reports the EL and CL values for the Unified-
DNN implementation over all areas (identified by columns),
varying the offset value from 0.0 to 0.9. It is possible to
notice that when the offset increases, lower values of CL

are achieved at the cost of higher values of EL. When the
values of the offset are large, the SBSs tend to be kept ON,
resulting in higher energy consumption, but lower lost traffic.
Three scenarios achieve less than 0.1% coverage loss with
acceptable loss in energy efficiency, when the offset is 0.9. The
overall average performance with offeset 0.9 is EL = 37.48
and CL = 0.02. The value of the average energy efficiency
loss can be considered acceptable, given the almost perfect
performance in terms of coverage.

When we consider the performance of the unified-RNN,
reported in Fig. 9, it possible to notice that it fails to provide
less than 0.1% coverage for the case of Rho, with any offset
value among those we considered. Nevertheless, with offset
equal to 0.9, the average across all scenarios is below 0.1%;
indeed, we get: EL = 26.7, CL = 0.05.

Finally, Figure 10 reports for the considered algorithms CL

versus EL. The 2 considered two-step solutions (DNN and
RNN) are shown as points, whereas the 2 considered unified
solutions are shown as curves, which are generated by varying
the offset value from 0 to 0.9. In the plot, the Two-Step-RNN



Fig. 9: The performance of the Unified-RNN implementation
for each of the 11 tested scenarios, for each threshold setting
from 0 to 0.9

Fig. 10: CL versus EL; the two-step solutions are shown
as points, whereas the unified solutions are shown as curves
generated by varying the offset value from 0 to 0.9

shows the power of RNNs when used for simple time series
estimation by being the algorithm with the best efficiency to
coverage ratio.

Although the unified algorithm’s ratios are not outperform-
ing the Two-Step-RNN, unified solutions offer the added
flexibility of being adjustable, thanks to the introduction of the
offset, which permits giving weight to Coverage loss. We also

see that both unified scenarios perform similarly. As regards
implementation complexity, we wish to remark that Unified-
DNN solutions are the least computing intensive among the
considered alternatives.

VI. CONCLUSIONS

In this paper we investigated the effectiveness of four
different classes of ANNs in the short-term estimation of the
traffic load of BSs in HetNets, with the objective of creating
on-line sleep algorithms for energy saving.

Two of the considered ANNs only deal with traffic estima-
tion, and BS switching decisions are based on their outputs.
The other two ANNs deal both with traffic estimation and
switching decisions, so their output can be directly used to
drive the HetNet management algorithm.

All the considered options proved quite effective, but with
the second class of ANNs we achieved the goal of saving a
substantial amount of energy with minimal QoS reduction. In
particular, the amount of served traffic is at least 99.9% of the
requests, while achieving 63% of the possible energy savings.
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