4 research outputs found

    Physiologic and pathologic changes of platelets in pregnancy.

    No full text
    International audiencePlatelets are key players in haemostasis and thrombus formation. Defects affecting platelets during pregnancy can lead to heterogeneous complications, such as thrombosis, first trimester miscarriage and postpartum haemorrhage. The incidence of complications is increased in women who have heritable platelet function disorders. Modifications of platelet count or platelet functions during normal pregnancy and preeclampsia will be summarized and the management of pregnant women with heritable platelet function disorders will be discussed

    Selective Liver Estrogen Receptor Modulation Prevents Steatosis, Diabetes, and Obesity Through the Anorectic Growth Differentiation Factor 15 Hepatokine in Mice

    No full text
    International audienceHepatocyte estrogen receptor α (ERα) was recently recognized as a relevant molecular target for nonalcoholic fatty liver disease (NAFLD) prevention. The present study defined to what extent hepatocyte ERα could be involved in preserving metabolic homeostasis in response to a full (17β-estradiol [E2]) or selective (selective estrogen receptor modulator [SERM]) activation. Ovariectomized mice harboring a hepatocyte-specific deletion ( mice) and their wild-type (WT) littermates were fed a high-fat diet (HFD) and concomitantly treated with E2, tamoxifen (TAM; the most used SERM), or vehicle. As expected, both E2 and TAM prevented all HFD-induced metabolic disorders in WT mice, and their protective effects against steatosis were abolished in mice. However, while E2 still prevented obesity and glucose intolerance in mice, hepatocyte deletion also abrogated TAM-mediated control of food intake as well as its beneficial actions on adiposity, insulin sensitivity, and glucose homeostasis, suggesting a whole-body protective role for liver-derived circulating factors. Moreover, unlike E2, TAM induced a rise in plasma concentration of the anorectic hepatokine growth differentiation factor 15 (Gdf15) through a transcriptional mechanism dependent on hepatocyte ERα activation. Accordingly, ERα was associated with specific binding sites in the regulatory region in hepatocytes from TAM-treated mice but not under E2 treatment due to specific epigenetic modifications. Finally, all the protective effects of TAM were abolished in HFD-fed knockout mice. We identified the selective modulation of hepatocyte ERα as a pharmacologic strategy to induce sufficient anorectic hepatokine Gdf15 to prevent experimental obesity, type 2 diabetes, and NAFLD

    C. Literaturwissenschaft.

    No full text
    corecore