1,107 research outputs found

    Vacancy-mediated dopant diffusion activation enthalpies for germanium

    Get PDF
    Electronic structure calculations are used to predict the activation enthalpies of diffusion for a range of impurity atoms (aluminium, gallium, indium, silicon, tin, phosphorus, arsenic, and antimony) in germanium. Consistent with experimental studies, all the impurity atoms considered diffuse via their interaction with vacancies. Overall, the calculated diffusion activation enthalpies are in good agreement with the experimental results, with the exception of indium, where the most recent experimental study suggests a significantly higher activation enthalpy. Here, we predict that indium diffuses with an activation enthalpy of 2.79 eV, essentially the same as the value determined by early radiotracer studies

    Experimental Limit to Interstellar 244Pu Abundance

    Get PDF
    Short-lived nuclides, now extinct in the solar system, are expected to be present in the interstellar medium (ISM). Grains of ISM origin were recently discovered in the inner solar system and at Earth orbit and may accrete onto Earth after ablation in the atmosphere. A favorable matrix for detection of such extraterrestrial material is presented by deep open-sea sediments with very low sedimentation rates (0.8-3 mm/kyr). We report here on the measurement of Pu isotopic abundances in a 1-kg deep-sea dry sediment collected in 1992 in the North Pacific. Our measured value of (3+-3)x10^5 244Pu atoms in the Pu-separated fraction of the sample shows no excess over the expected stratospheric nuclear fallout content and under reasonable assumptions we derive a limit of 2x10^-11 g-244Pu/g-ISM for the abundance of 244Pu in ISM.Comment: 10 p, 1 fig, LateX(AASTeX) Accepted for publication in ApJL, aug 2, 200

    Attitudes towards medication non-adherence in elderly kidney transplant patients: A Q methodology study

    Get PDF
    Background. Non-adherence to the post-transplant regime is a common problem in kidney transplant patients and may lead to rejection or even graft failure. This study investigated attitudes towards the post-transplant regime of immunosuppressive medication among the ever growing population of elderly kidney recipients.Methods. Q methodology was used to explore attitude profiles. Participants (> 65 years) were asked to rank-order opinion statements on issues associated with (non-)adherence. The rankings were subject to by-person factor analysis, and the resulting factors were interpreted and described as attitudes.Results. Twenty-six elderly renal transplant recipients participated in the study. All passed the Mini-Mental

    Ni-62(n,gamma) and Ni-63(n,gamma) cross sections measured at the n_TOF facility at CERN

    Get PDF
    The cross section of the Ni-62(n,gamma) reaction was measured with the time-of-flight technique at the neutron time-of-flight facility n_TOF at CERN. Capture kernels of 42 resonances were analyzed up to 200 keV neutron energy and Maxwellian averaged cross sections (MACS) from kT = 5-100 keV were calculated. With a total uncertainty of 4.5%, the stellar cross section is in excellent agreement with the the KADoNiS compilation at kT = 30 keV, while being systematically lower up to a factor of 1.6 at higher stellar temperatures. The cross section of the Ni-63(n,gamma) reaction was measured for the first time at n_TOF. We determined unresolved cross sections from 10 to 270 keV with a systematic uncertainty of 17%. These results provide fundamental constraints on s-process production of heavier species, especially the production of Cu in massive stars, which serve as the dominant source of Cu in the solar system.Peer reviewedFinal Accepted Versio

    High-accuracy determination of the U 238 / U 235 fission cross section ratio up to ≈1 GeV at n-TOF at CERN

    Get PDF
    Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOIThe U238 to U235 fission cross section ratio has been determined at n-TOF up to ≈1 GeV, with two different detection systems, in different geometrical configurations. A total of four datasets has been collected and compared. They are all consistent to each other within the relative systematic uncertainty of 3-4%. The data collected at n-TOF have been suitably combined to yield a unique fission cross section ratio as a function of neutron energy. The result confirms current evaluations up to 200 MeV. Good agreement is also observed with theoretical calculations based on the INCL++/Gemini++ combination up to the highest measured energy. The n-TOF results may help solve a long-standing discrepancy between the two most important experimental datasets available so far above 20 MeV, while extending the neutron energy range for the first time up to ≈1 GeV.Peer reviewedFinal Published versio

    High accuracy 234U(n,f) cross section in the resonance energy region

    Get PDF
    New results are presented of the 234U neutron-induced fission cross section, obtained with high accuracy in the resonance region by means of two methods using the 235U(n,f) as reference. The recent evaluation of the 235U(n,f) obtained with SAMMY by L. C. Leal et al. (these Proceedings), based on previous n-TOF data [1], has been used to calculate the 234U(n,f) cross section through the 234U/235U ratio, being here compared with the results obtained by using the n-TOF neutron flux

    Measurement of the 12C(n,p)12B cross section at n-TOF at CERN by in-beam activation analysis

    Get PDF
    The integral cross section of the 12C(n,p)12B reaction has been determined for the first time in the neutron energy range from threshold to several GeV at the n-TOF facility at CERN. The measurement relies on the activation technique with the ÎČ decay of 12B measured over a period of four half-lives within the same neutron bunch in which the reaction occurs. The results indicate that model predictions, used in a variety of applications, are mostly inadequate. The value of the integral cross section reported here can be used as a benchmark for verifying or tuning model calculations.Peer reviewedFinal Accepted Versio

    Towards the high-accuracy determination of the 238U fission cross section at the threshold region at CERN - N-TOF

    Get PDF
    The 238U fission cross section is an international standard beyond 2 MeV where the fission plateau starts. However, due to its importance in fission reactors, this cross-section should be very accurately known also in the threshold region below 2 MeV. The 238U fission cross section has been measured relative to the 235U fission cross section at CERN - n-TOF with different detection systems. These datasets have been collected and suitably combined to increase the counting statistics in the threshold region from about 300 keV up to 3 MeV. The results are compared with other experimental data, evaluated libraries, and the IAEA standards

    238U(n, Îł) reaction cross section measurement with C 6D6 detectors at the n-TOF CERN facility

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedThe radiative capture cross section of 238U is very important for the developing of new reactor technologies and the safety of existing ones. Here the preliminary results of the 238U(n,Îł) cross section measurement performed at n-TOF with C6D6 scintillation detectors are presented, paying particular attention to data reduction and background subtraction.Peer reviewe
    • 

    corecore