138 research outputs found
Select pyrimidinones inhibit the propagation of the malarial parasite, Plasmodium falciparum
Plasmodium falciparum, the Apicomplexan parasite that is responsible for the most lethal forms of human malaria, is exposed to radically different environments and stress factors during its complex lifecycle. In any organism, Hsp70 chaperones are typically associated with tolerance to stress. We therefore reasoned that inhibition of P. falciparum Hsp70 chaperones would adversely affect parasite homeostasis. To test this hypothesis, we measured whether pyrimidinone-amides, a new class of Hsp70 modulators, could inhibit the replication of the pathogenic P. falciparum stages in human red blood cells. Nine compounds with IC50 values from 30 nM to 1.6 μM were identified. Each compound also altered the ATPase activity of purified P. falciparum Hsp70 in single-turnover assays, although higher concentrations of agents were required than was necessary to inhibit P. falciparum replication. Varying effects of these compounds on Hsp70s from other organisms were also observed. Together, our data indicate that pyrimidinone-amides constitute a novel class of anti-malarial agents. © 2009 Elsevier Ltd. All rights reserved
Orientación psicosocial y apoyo al adulto mayor que asiste al Hospital Nacional Pedro de Bethancourt, Asociación Probienestar del paciente diabético y Asociación de Jubilados de Sacatepéquez, Antigua Guatemala.
Posibilitar orientación psicosocial y apoyo al adulto mayor que asiste al Hospital Hermano Pedro de ¬Betancourt, Asociación Probienestar del Paciente Diabético y Asociación de Jubilados y Pensionados de Sacatepéquez”, El Ejercicio Profesional Supervisado se llevó a cabo en la aldea de San Felipe de Jesús de Antigua Guatemala, con el objetivo de proporcionar herramientas psicológicas que posibilitaran al adulto mayor, reflexionar acerca del proceso de vida, en especial del proceso de envejecimiento, para que fuera capaz de encontrar el sentido de vida aún en circunstancias de sufrimiento y contribuir de esta manera a mejorar su Salud Mental. Desarrolló los subprogramas de: servicio, docencia e investigación. El subprograma de servicio, brindó atención clínica de casos, tanto de forma individual como grupal. Se realizaron entrevistas, historias clínicas, en las que se registró la información de forma confidencial, que permitió recopilar los datos más relevantes de la problemática. En el subprograma de docencia, se impartieron talleres y charlas, de forma participativa, en el cual se dieron a conocer diversos temas como: el sufrimiento, estrés, la culpa, motivación, trastornos del sueño, la familia, sentido de vida, autoestima, autorrealización, el significado de la muerte, entre otros. Temas que se desarrollaron a lo largo del Ejercicio Profesional Supervisado y que fueron de mucha ayuda para las personas con las que se trabajó. En el subprograma de investigación, se tomó como base la observación, se consideró de suma importancia trabajar el tema “Factores que ocasionan la falta de sentido de vida en el adulto mayor”. El tipo de investigación que se llevó a cabo fue descriptivo, esta permitió sustentar el trabajo que se llevó a cabo durante el Ejercicio Profesional Supervisado. Se aplicó un cuestionario sobre el sufrimiento, para conocer los factores que ocasionaron este tipo de sentimientos y provocaron escasos deseos de seguir viviendo. Se analizó la información y se estableció que, el mayor sufrimiento para el adulto mayor es la dificultad de relación y convivencia con los hijos. La falta de sentido de vida es provocada por el sentimiento de soledad que posee el adulto mayor luego de la partida de los hijos del hogar o la muerte de su pareja
Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies
Antimalarial chemotherapy, globally reliant on artemisinin-based combination therapies (ACTs), is threatened by the spread of drug resistance in Plasmodium falciparum parasites. Here we use zinc-finger nucleases to genetically modify the multidrug resistance-1 transporter PfMDR1 at amino acids 86 and 184, and demonstrate that the widely prevalent N86Y mutation augments resistance to the ACT partner drug amodiaquine and the former first-line agent chloroquine. In contrast, N86Y increases parasite susceptibility to the partner drugs lumefantrine and mefloquine, and the active artemisinin metabolite dihydroartemisinin. The PfMDR1 N86 plus Y184F isoform moderately reduces piperaquine potency in strains expressing an Asian/African variant of the chloroquine resistance transporter PfCRT. Mutations in both digestive vacuole-resident transporters are thought to differentially regulate ACT drug interactions with host haem, a product of parasite-mediated haemoglobin degradation. Global mapping of these mutations illustrates where the different ACTs could be selectively deployed to optimize treatment based on regional differences in PfMDR1 haplotypes.This work was funded in part by the National Institutes of Health (R01 AI50234, AI124678 and AI109023) and a Burroughs Wellcome Fund Investigator in Pathogenesis of Infectious Diseases award to D.A.F. This research also received funding from the Portuguese Fundacao para a Ciencia e Tecnologia (FCT), cofunded by Programa Operacional Regional do Norte (ON.2-O Novo Norte); from the Quadro de Referencia Estrategico Nacional (QREN) through the Fundo Europeu de Desenvolvimento Regional (FEDER) and from the Projeto Estrategico - LA 26 - 2013-2014 (PEst-C/SAU/LA0026/2013). M.I.V. is the recipient of a postdoctoral fellowship from FCT/Ministerio da Ciencia e Ensino Superior, Portugal-MCES (SFRH/BPD/76614/2011). A.M.L. was supported by an Australian National Health and Medical Research Council (NHMRC) Overseas Biomedical Fellowship (585519). R.E.M. was supported by an NHMRC RD Wright Biomedical Fellowship (1053082). A.C.U. was supported by an Irving scholarship from Columbia University. We thank Dr Andrea Ecker for her help with plasmid design and Pedro Ferreira for his expert help with Fig. 6.info:eu-repo/semantics/publishedVersio
Molecular markers of anti-malarial drug resistance in Central, West and East African children with severe malaria.
BACKGROUND: The Plasmodium falciparum multidrug resistance 1 (PfMDR1), P. falciparum Ca(2+)-ATPase (PfATP6) and Kelch-13 propeller domain (PfK13) loci are molecular markers of parasite susceptibility to anti-malarial drugs. Their frequency distributions were determined in the isolates collected from children with severe malaria originating from three African countries. METHODS: Samples from 287 children with severe malaria [(Gabon: n = 114); (Ghana: n = 89); (Kenya: n = 84)] were genotyped for pfmdr1, pfatp6 and pfk13 loci by DNA sequencing and assessing pfmdr1 copy number variation (CNV) by real-time PCR. RESULTS: Pfmdr1-N86Y mutation was detected in 48, 10 and 10% in Lambaréné, Kumasi and Kisumu, respectively. At codon 184, the prevalence of the mutation was 73% in Lambaréné, 63% in Kumasi and 49% Kisumu. The S1034C and N1042D variants were absent at all three sites, while the frequency of the D1246Y mutation was 1, 3 and 13% in Lambaréné, Kumasi and Kisumu, respectively. Isolates with two pfmdr1 gene copy number predominantly harboured the N86Y wild-type allele and were mostly found in Kumasi (10%) (P < 0.0001). Among the main pfmdr1 haplotypes (NFD, NYD and YFD), NYD was associated with highest parasitaemia (P = 0.04). At the pfatp6 locus, H243Y and A623E mutations were observed at very low frequency at all three sites. The prevalence of the pfatp6 E431K variant was 6, 18 and 17% in Lambaréné, Kumasi and Kisumu, respectively. The L263E and S769N mutations were absent in all isolates. The pfk13 variants associated with artemisinin resistance in Southeast Asia were not observed. Eleven novel substitutions in the pfk13 locus occurring at low frequency were observed. CONCLUSIONS: Artemisinins are still highly efficacious in large malaria-endemic regions though declining efficacy has occurred in Southeast Asia. The return of chloroquine-sensitive strains following the removal of drug pressure is observed. However, selection of wild-type alleles in the multidrug-resistance gene and the increased gene copy number is associated with reduced lumefantrine sensitivity. This study indicates a need to constantly monitor drug resistance to artemisinin in field isolates from malaria-endemic countries
Abordaje de los desafíos metodológicos presentes en la formulación y evaluación de un proyecto socioproductivo en la comunidad Colonia la Libertad, Upala, Costa Rica, 2018
La presente investigación se ha desarrollado en la comunidad rural Colonia la Libertad, distrito Aguas Claras, cantón Upala, provincia Alajuela, Costa Rica, 2018. Con la finalidad de elaborar un estudio de factibilidad para instalación de una Planta Procesadora y Comercializadora de Carne de Pollo, la cual sería gestionada a través de la Cooperativa de Productores Agropecuarios y Servicios Múltiples de Colonia Libertad de Upala (Coopeliberteños R.L.). Este proyecto busca a través del trabajo cooperativo desarrollar un proyecto socioproductivo como mecanismo de producción y comercialización que represente una fuente de ingresos para las personas asociadas a Coopeliberteños R.L.Facultad de Humanidades y Ciencias de la Educació
Drug Resistance in Eukaryotic Microorganisms
Eukaryotic microbial pathogens are major contributors to illness and death globally. Although much of their impact can be controlled by drug therapy as with prokaryotic microorganisms, the emergence of drug resistance has threatened these treatment efforts. Here, we discuss the challenges posed by eukaryotic microbial pathogens and how these are similar to, or differ from, the challenges of prokaryotic antibiotic resistance. The therapies used for several major eukaryotic microorganisms are then detailed, and the mechanisms that they have evolved to overcome these therapies are described. The rapid emergence of resistance and the restricted pipeline of new drug therapies pose considerable risks to global health and are particularly acute in the developing world. Nonetheless, we detail how the integration of new technology, biological understanding, epidemiology and evolutionary analysis can help sustain existing therapies, anticipate the emergence of resistance or optimize the deployment of new therapies
A General Approach to the Basiliolide/Transtaganolide Natural Products: Total Syntheses of Basiliolide B, epi-8-Basiliolide B, Transtaganolide C, and Transtaganolide D
Expansion of a specific plasmodium falciparum PfMDR1 Haplotype in southeast Asia with increased substrate transport
Artemisinin-based combination therapies (ACTs) have been vital in reducing malaria mortality rates since the 2000s. Their efficacy, however, is threatened by the emergence and spread of artemisinin resistance in Southeast Asia. The Plasmodium falciparum multidrug resistance protein 1 (PfMDR1) transporter plays a central role in parasite resistance to ACT partner drugs through gene copy number variations (CNV) and/or single nucleotide polymorphisms (SNPs). Using genomic epidemiology, we show that multiple pfmdr1 copies encoding the N86 and 184F haplotype are prevalent across Southeast Asia. Applying genome editing tools on the Southeast Asian Dd2 strain and using a surrogate assay to measure transporter activity in infected red blood cells, we demonstrate that parasites harboring multicopy N86/184F PfMDR1 have a higher Fluo-4 transport capacity compared with those expressing the wild-type N86/Y184 haplotype. Multicopy N86/184F PfMDR1 is also associated with decreased parasite susceptibility to lumefantrine. These findings provide evidence of the geographic selection and expansion of specific multicopy PfMDR1 haplotypes associated with multidrug resistance in Southeast Asia.IMPORTANCE Global efforts to eliminate malaria depend on the continued success of artemisinin-based combination therapies (ACTs) that target Plasmodium asexual blood-stage parasites. Resistance to ACTs, however, has emerged, creating the need to define the underlying mechanisms. Mutations in the P. falciparum multidrug resistance protein 1 (PfMDR1) transporter constitute an important determinant of resistance. Applying gene editing tools combined with an analysis of a public database containing thousands of parasite genomes, we show geographic selection and expansion of a pfmdr1 gene amplification encoding the N86/184F haplotype in Southeast Asia. Parasites expressing this PfMDR1 variant possess a higher transport capacity that modulates their responses to antimalarials. These data could help tailor and optimize antimalarial drug usage in different regions where malaria is endemic by taking into account the regional prevalence of pfmdr1 polymorphisms.This work was funded by Portuguese National funds through the Foundation for Science and Technology (FCT) (project UIDB/50026/2020 and UIDP/50026/2020; fellowships PD/BD/127826/2016 to C.C., SFRH/BD/129769/2017 to M.S., SFRH/BD/145427/2019 to V.B., SFRH/BD/131540/2017 to R.S.P., and IF/00143/2015/CP1294/CT0001 to P.E.F. and contract funding to M.I.V. provided through DL 57/2016 [CRP]); by the projects NORTE-01-0145-FEDER-000013, NORTE-01-0145-FEDER-000023, and NORTE 01-0145-FEDER-028178, supported by Norte Portugal Regional Operational Program (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the Euro pean Regional Development Fund (ERDF); by the Institute Merieux through “Starting” Mérieux Research Grant 2016 to M.I.V.; by the ESCMID to P.E.F. and by the NIH R01 AI109023 and R37AI50234 to D.A.F.info:eu-repo/semantics/publishedVersio
A General Approach to the Basiliolide/Transtaganolide Natural Products: Total Syntheses of Basiliolide B, epi-8-Basiliolide B, Transtaganolide C, and Transtaganolide D
Chloroquine Clinical Failures in P. falciparum Malaria Are Associated with Mutant Pfmdr-1, Not Pfcrt in Madagascar
Molecular studies have demonstrated that mutations in the Plasmodium falciparum chloroquine resistance transporter gene (Pfcrt) play a major role in chloroquine resistance, while mutations in P. falciparum multidrug resistance gene (Pfmdr-1) act as modulator. In Madagascar, the high rate of chloroquine treatment failure (44%) appears disconnected from the overall level of in vitro CQ susceptibility (prevalence of CQ-resistant parasites <5%) or Pfcrt mutant isolates (<1%), strongly contrasting with sub-Saharan African countries. Previous studies showed a high frequency of Pfmdr-1 mutant parasites (>60% of isolates), but did not explore their association with P. falciparum chloroquine resistance. To document the association of Pfmdr-1 alleles with chloroquine resistance in Madagascar, 249 P. falciparum samples collected from patients enrolled in a chloroquine in vivo efficacy study were genotyped in Pfcrt/Pfmdr-1 genes as well as the estimation of the Pfmdr-1 copy number. Except 2 isolates, all samples displayed a wild-type Pfcrt allele without Pfmdr-1 amplification. Chloroquine treatment failures were significantly associated with Pfmdr-1 86Y mutant codon (OR = 4.6). The cumulative incidence of recurrence of patients carrying the Pfmdr-1 86Y mutation at day 0 (21 days) was shorter than patients carrying Pfmdr-1 86N wild type codon (28 days). In an independent set of 90 selected isolates, in vitro susceptibility to chloroquine was not associated with Pfmdr-1 polymorphisms. Analysis of two microsatellites flanking Pfmdr-1 allele showed that mutations occurred on multiple genetic backgrounds. In Madagascar, Pfmdr-1 polymorphism is associated with late chloroquine clinical failures and unrelated with in vitro susceptibility or Pfcrt genotype. These results highlight the limits of the current in vitro tests routinely used to monitor CQ drug resistance in this unique context. Gaining insight about the mechanisms that regulate polymorphism in Pfmdr1 remains important, particularly regarding the evolution and spread of Pfmdr-1 alleles in P. falciparum populations under changing drug pressure which may have important consequences in terms of antimalarial use management
- …
