441 research outputs found

    Genetic characteristics of Plasmodium vivax from Northern Mali

    Get PDF
    Introduction: The surprising presence of P. vivax in West Africa and their ability to infect a Duffy negative population is one more threat to public health. In order to contribute to malaria elimination efforts, there is a need to investigate the origin and characteristics of P. vivax population isolates in Northern Mali. Next Generation Sequence Analysis (NGSA) can help us understand parasite genetic characteristics although low parasite density is a challenge for whole genome sequencing (WGS). In the present work, we investigated if selective whole genome amplification (sWGA) can enrich P. vivax DNA extracted from Rapid Diagnostic Tests (RDTs) for Whole Genome Sequencing. We also investigated the origin and the susceptibility to antimalarial drugs of the strains isolated in Northern Mali. Methods: Parasite DNA was extracted from 267 RDTs using the QIAamp DNA mini kit, then nested PCR and 7 samples were positive for P. vivax. After sWGA, the whole genomes were sequenced using the Illumina platform. Next Generation Sequences Analysis was done followed by population differentiation analyses. Twenty-two additional P. vivax whole genomes from other parts of the World were downloaded from the European Nucleotide Archive for further Neighbour Joining analysis. Results: The sequences extracted from RDTs showed high contamination with human DNA (80%). From the parasite DNA, in total 69529 SNPs were found in the seven P. vivax strains of Northern Mali. The most significant p-values per SNP were carried by the chromosomes 2, 3, 4, 5, 12, 13 and 14. With regard to variant effects, the Transition/Transversion ratio was 1.1. The density of variants with a high effect was 1.62%. There was no mutation associated with antimalarial drugs resistance on pvcrt-o or pvmdr-1 genes. Pairwise differentiation suggests a high degree of relatedness between P. vivax strains isolated in Northern Mali. The NeighboursJoining analysis shows clearly that strains from Mali cluster together and are genetically distinct from those from Mauritania, which shares a border with Mali. The strains isolated in Northern Mali are genetically closer to those from Madagascar, India and Latina America. Conclusion: We did not identify mutations associated to the resistance to antimalarial drugs in pvcrt-o and pvmdr-1 genes. This study confirms that P. vivax strains genetically distinct from those of Mauritania are circulating in Mali. Finally, we conclude that sWGA is a feasible approach for P. vivax DNA enrichment for WGS despite the high proportion of human contamination

    Drug resistance maps to guide intermittent preventive treatment of malaria in African infants

    Get PDF
    Intermittent preventive treatment of infants (IPTi) with sulphadoxine pyrimethamine (SP) is recommended as an additional malaria control intervention in high transmission areas of sub-Saharan Africa, provided its protective efficacy is not compromised by SP resistance. A significant obstacle in implementing SP-IPTi, is in establishing the degree of resistance in an area. Since SP monotherapy is discontinued, no contemporary measures of in vivo efficacy can be made, so the World Health Organisation has recommended a cut-off based upon molecular markers, stating that SP-IPTi should not be implemented when the prevalence of the dhps 540E mutation among infections exceeds 50%. We created a geo-referenced database of SP resistance markers in Africa from published literature. By selecting surveys of malaria infected blood samples conducted since 2004 we have mapped the contemporary prevalence of dhps 540E. Additional maps are freely available in interactive form at http://www.drugresistancemaps.org/ipti/. Eight countries in East Africa are classified as unsuitable for SP-IPTi when data are considered at a national level. Fourteen countries in Central and West Africa were classified as suitable while seven countries had no available contemporary data to guide policy. There are clear deficiencies in molecular surveillance data coverage. We discuss requirements for ongoing surveillance of SP resistance markers in support of the use of SP-IPTi

    Genetic diversity and drug resistance surveillance of Plasmodium falciparum for malaria elimination: is there an ideal tool for resource-limited sub-Saharan Africa?

    Get PDF
    The intensification of malaria control interventions has resulted in its global decline, but it remains a significant public health burden especially in sub-Saharan Africa (sSA). Knowledge on the parasite diversity, its transmission dynamics, mechanisms of adaptation to environmental and interventional pressures could help refine or develop new control and elimination strategies. Critical to this is the accurate assessment of the parasite's genetic diversity and monitoring of genetic markers of anti-malarial resistance across all susceptible populations. Such wide molecular surveillance will require selected tools and approaches from a variety of ever evolving advancements in technology and the changing epidemiology of malaria. The choice of an effective approach for specific endemic settings remains challenging, particularly for countries in sSA with limited access to advanced technologies. This article examines the current strategies and tools for Plasmodium falciparum genetic diversity typing and resistance monitoring and proposes how the different tools could be employed in resource-poor settings. Advanced approaches enabling targeted deep sequencing is valued as a sensitive method for assessing drug resistance and parasite diversity but remains out of the reach of most laboratories in sSA due to the high cost of development and maintenance. It is, however, feasible to equip a limited number of laboratories as Centres of Excellence in Africa (CEA), which will receive and process samples from a network of peripheral laboratories in the continent. Cheaper, sensitive and portable real-time PCR methods can be used in peripheral laboratories to pre-screen and select samples for targeted deep sequence or genome wide analyses at these CEAs

    HIV-positive nigerian adults harbor significantly higher serum lumefantrine levels than HIV-negative individuals seven days after treatment for Plasmodium falciparum infection.

    Get PDF
    Management of coinfection with malaria and HIV is a major challenge to public health in developing countries, and yet potential drug-drug interactions between antimalarial and antiviral regimens have not been adequately investigated in people with both infections. Each of the constituent components of artemether-lumefantrine, the first-line regimen for malaria treatment in Nigeria, and nevirapine, a major component of highly active antiretroviral therapy, are drugs metabolized by the cytochrome P450 3A4 isoenzyme system, which is also known to be induced by nevirapine. We examined potential interactions between lumefantrine and nevirapine in 68 HIV-positive adults, all of whom were diagnosed with asymptomatic Plasmodium falciparum infections by microscopy. Post hoc PCR analysis confirmed the presence of P. falciparum in only a minority of participants. Day 7 capillary blood levels of lumefantrine were significantly higher in HIV-positive participants than in 99 HIV-negative controls (P = 0.0011). Associations between day 7 levels of lumefantrine and risk of persistent parasitemia could not be evaluated due to inadequate power. Further investigations of the impact of nevirapine on in vivo malaria treatment outcomes in HIV-infected patients are thus needed

    Plasmodium falciparum Plasmepsin 2 Duplications, West Africa

    Get PDF
    Dihydroartemisinin/piperaquine (DHA/PPQ) is increasingly deployed as antimalaria drug in Africa. We report the detection in Mali of Plasmodium falciparum infections carrying plasmepsin 2 duplications (associated with piperaquine resistance) in 7/65 recurrent infections within 2 months after DHA/PPQ treatment. These findings raise concerns about the long-term efficacy of DHA/PPQ treatment in Africa.This work was supported by a Swedish Research Council Grant (no. VR-2014-3134). The WANECAM study is funded by the European and Developing Countries Clinical Trial Partnership and by the Medicines for Malaria Venture (Geneva, Switzerland) and is co-funded by the United Kingdom Medical Research Councils, the Swedish International Development Cooperation Agency, the German Ministry for Education and Research, the University Claude Bernard (Lyon, France), the University of Science, Techniques, and Technologies of Bamako (Bamako, Mali), the Centre National de Recherche et de Formation sur le Paludisme (Burkina Faso), the Institut de Recherche en Sciences de la Sante (Bobo-Dioulasso, Burkina Faso), and the Centre National de Formation et de Recherche en Sante Rurale (Guinea).J.I. was supported by EuroInkaNet/Erasmus Mundus Program. Fundacao para a Ciencia e Tecnologia supports M.S. (grant no. SFRH/BD/129769/2017), M.I.V. (grant no. SFRH/BPD/76614/2011), and P.E.F. (grant no. IF/00143/2015)

    COVID-19: Shining the Light on Africa.

    Get PDF
    COVID-19: Shining the Light on Africa

    A multi-center, open-label trial to compare the efficacy and pharmacokinetics of Artemether-Lumefantrine in children with severe acute malnutrition versus children without severe acute malnutrition: study protocol for the MAL-NUT study

    Get PDF
    BACKGROUND:Malnutrition and malaria frequently coexist in sub-Saharan African countries. Studies on efficacy of antimalarial treatments usually follow the WHO standardized protocol in which severely malnourished children are systematically excluded.Few studies have assessed the efficacy of chloroquine, sulfadoxine-pyrimethamine and quinine in severe acute malnourished children. Overall, efficacy of these treatments appeared to be reduced, attributed to lower immunity and for some antimalarials altered pharmacokinetic profiles and lower drug concentrations. However, similar research on the efficacy and pharmacokinetic profiles of artemisinin-combination therapies (ACTs) and especially artemether-lumefantrine in malnourished children is currently lacking.The main objective of this study is to assess whether artemether-lumefantrine is less efficacious in children suffering from severe acute malnutrition (SAM) compared to non-SAM children, and if so, to what extent this can be attributed to a sub-optimal pharmacokinetic profile.METHODS/DESIGN:In two sites, Ouelessebougou, Mali and Maradi, Niger, children with uncomplicated microscopically-confirmed P. falciparum malaria aged between 6 and 59 months will be enrolled. Two non-SAM children will be enrolled after the enrolment of each SAM case. Children with severe manifestations of malaria or complications of acute malnutrition needing intensive treatment will be excluded.Treatment intakes will be supervised and children will be followed-up for 42 days, according to WHO guidance for surveillance of antimalarial drug efficacy. Polymerase Chain Reaction genotyping will be used to distinguish recrudescence from re-infection. SAM children will also benefit from the national nutritional rehabilitation program.Outcomes will be compared between the SAM and non-SAM populations. The primary outcome will be adequate clinical and parasitological response at day 28 after PCR correction, estimated by Kaplan-Meier analysis. To assess the pharmacokinetic profile of lumefantrine, a sparse sampling approach will be used with randomized allocation of sampling times (5 per child). A total of 180 SAM children and 360 non-SAM children will be recruited during the 2013 and 2014 malaria seasons.DISCUSSION:This study will provide important information that is currently lacking on the effect of SAM on therapeutic efficacy and pharmacokinetic profile of artemether-lumefantrine. If it shows lower therapeutic efficacy and decreased lumefantrine concentrations, it would inform dose optimization studies in SAM children.TRIAL REGISTRATION:ClinicalTrials.gov: NCT0195890

    Efficacy of chloroquine, amodiaquine and sulphadoxine-pyrimethamine for the treatment of uncomplicated falciparum malaria: revisiting molecular markers in an area of emerging AQ and SP resistance in Mali

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To update the National Malaria Control Programme of Mali on the efficacy of chloroquine, amodiaquine and sulphadoxine-pyrimethamine in the treatment of uncomplicated <it>falciparum </it>malaria.</p> <p>Methods</p> <p>During the malaria transmission seasons of 2002 and 2003, 455 children – between six and 59 months of age, with uncomplicated malaria in Kolle, Mali, were randomly assigned to one of three treatment arms. <it>In vivo </it>outcomes were assessed using WHO standard protocols. Genotyping of <it>msp1</it>, <it>msp2 </it>and CA1 polymorphisms were used to distinguish reinfection from recrudescent parasites (molecular correction).</p> <p>Results</p> <p>Day 28 adequate clinical and parasitological responses (ACPR) were 14.1%, 62.3% and 88.9% in 2002 and 18.2%, 60% and 85.2% in 2003 for chloroquine, amodiaquine and sulphadoxine-pyrimethamine, respectively. After molecular correction, ACPRs (cACPR) were 63.2%, 88.5% and 98.0% in 2002 and 75.5%, 85.2% and 96.6% in 2003 for CQ, AQ and SP, respectively. Amodiaquine was the most effective on fever. Amodiaquine therapy selected molecular markers for chloroquine resistance, while in the sulphadoxine-pyrimethamine arm the level of <it>dhfr </it>triple mutant and <it>dhfr</it>/<it>dhps </it>quadruple mutant increased from 31.5% and 3.8% in 2002 to 42.9% and 8.9% in 2003, respectively. No infection with <it>dhps </it>540E was found.</p> <p>Conclusion</p> <p>In this study, treatment with sulphadoxine-pyrimethamine emerged as the most efficacious on uncomplicated falciparum malaria followed by amodiaquine. The study demonstrated that sulphadoxine-pyrimethamine and amodiaquine were appropriate partner drugs that could be associated with artemisinin derivatives in an artemisinin-based combination therapy.</p
    corecore