42 research outputs found
Tunable Room Temperature THz Sources Based on Nonlinear Mixing in a Hybrid Optical and THz Micro-Ring Resonator
We propose and systematically investigate a novel tunable, compact room temperature terahertz (THz) source based on difference frequency generation in a hybrid optical and THz micro-ring resonator. We describe detailed design steps of the source capable of generating THz wave in 0.5â10 THz with a tunability resolution of 0.05 THz by using high second order optical susceptibility (x(2)) in crystals and polymers. In order to enhance THz generation compared to bulk nonlinear material, we employ a nonlinear optical micro-ring resonator with high-Q resonant modes for infrared input waves. Another ring oscillator with the same outer radius underneath the nonlinear ring with an insulation of SiO2 layer supports the generated THz with resonant modes and out-couples them into a THz waveguide. The phase matching condition is satisfied by engineering both the optical and THz resonators with appropriate effective indices. We analytically estimate THz output power of the device by using practical values of susceptibility in available crystals and polymers. The proposed source can enable tunable, compact THz emitters, on-chip integrated spectrometers, inspire a broader use of THz sources and motivate many important potential THz applications in different fields
Challenges and recent advancements of functionalization of two-dimensional nanostructured molybdenum trioxide and dichalcogenides
Atomically-thin two-dimensional (2D) semiconductors are the thinnest functional semiconducting materials available today. Among them, both molybdenum trioxide and chalcogenides (MT&Ds) represent key components within the family of the different 2D semiconductors for various electronic, optoelectronic and electrochemical applications due to their unique electronic, optical, mechanical and electrochemical properties. However, despite great progress in research dedicated to the development and fabrication of 2D MT&Ds observed within the last decade, there are significant challenges affected their charge transport behavior, fabrication on a large scale as well as high dependence of the carrier mobility on thickness. In this article, we review the recent progress on the carrier mobility engineering of 2D MT&Ds and elaborate devised strategies dedicated to the optimization of MT&Ds properties. Specifically, the latest physical and chemical methods towards the surface functionalization and optimization of the major factors influencing the extrinsic transport at the electrode-2D semiconductor interface are discusse
Sonochemical Synthesis of Zinc Oxide Nanostructures for Sensing and Energy Harvesting
Semiconductor nanostructures have attracted considerable research interest due to their unique physical and chemical properties at nanoscale which open new frontiers for applications in electronics and sensing. Zinc oxide nanostructures with a wide range of applications, especially in optoelectronic devices and bio sensing, have been the focus of research over the past few decades. However ZnO nanostructures have failed to penetrate the market as they were expected to, a few years ago. The two main reasons widely recognized as bottleneck for ZnO nanostructures are (1) Synthesis technique which is fast, economical, and environmentally benign which would allow the growth on arbitrary substrates and (2) Difficulty in producing stable p-type doping. The main objective of this research work is to address these two bottlenecks and find a solution that is inexpensive, environmentally benign and CMOS compatible. To achieve this, we developed a Sonochemical method to synthesize 1D ZnO Nanorods, core-shell nanorods, 2D nanowalls and nanoflakes on arbitrary substrates which is a rapid, inexpensive, CMOS compatible and environmentally benign method and allows us to grow ZnO nanostructures on any arbitrary substrate at ambient conditions while most other popular methods used are either very slow or involve extreme conditions such as high temperatures and low pressure. A stable, reproducible p-type doping in ZnO is one of the most sought out application in the field of optoelectronics. Here in this project, we doped ZnO nanostructures using sonochemical method to achieve a stable and reproducible doping in ZnO. We have fabricated a homogeneous ZnO radial p-n junction by growing a p-type shell around an n-type core in a controlled way using the sonochemical synthesis method to realize ZnO homogeneous core-shell radial p-n junction for UV detection. ZnO has a wide range of applications from sensing to energy harvesting. In this work, we demonstrate the successful fabrication of an electrochemical immunosensor using ZnO nanoflakes to detect Cortisol and compare their performance with that of ZnO nanorods. We have explored the use of ZnO nanorods in energy harvesting in the form of Dye Sensitized Solar Cells (DSSC) and Perovskite Solar Cells
Graphene FETs with Low-Resistance Hybrid Contacts for Improved High Frequency Performance
This work proposes a novel geometry field effect transistor with graphene as a channelâgraphene field-effect transistor (GFET), having a hybrid contact that consists of an ohmic source/drain and its extended part towards the gate, which is capacitively coupled to the channel. The ohmic contacts are used for direct current (DC) biasing, whereas their capacitive extension reduces access region length and provides the radio frequency (RF) signal a low impedance path. Minimization of the access region length, along with the paralleling of ohmic contactâs resistance and resistive part of capacitively coupled contactâs impedance, lower the overall source/drain resistance, which results in an increase in current gain cut-off frequency, fT. The DC and high-frequency characteristics of the two chosen conventional baseline GFETs, and their modified versions with proposed hybrid contacts, have been extensively studied, compared, and analyzed using numerical and analytical techniques
Sonochemical Synthesis of a Zinc Oxide CoreâShell Nanorod Radial pân Homojunction Ultraviolet Photodetector
We
report for the first time on the growth of a homogeneous radial pân
junction in the ZnO coreâshell configuration with a p-doped
ZnO nanoshell structure grown around a high-quality unintentionally
n-doped ZnO nanorod using sonochemistry. The simultaneous decomposition
of phosphorous (P), zinc (Zn), and oxygen (O) from their respective
precursors during sonication allows for the successful incorporation
of P atoms into the ZnO lattice. The as-formed pân junction
shows a rectifying currentâvoltage characteristic that is consistent
with a pân junction with a threshold voltage of 1.3 V and an
ideality factor of 33. The concentration of doping was estimated to
be <i>N</i><sub>A</sub> = 6.7 Ă 10<sup>17</sup> cm<sup>â3</sup> on the p side from the capacitanceâvoltage
measurements. The fabricated radial pân junction demonstrated
a record optical responsivity of 9.64 A/W and a noise equivalent power
of 0.573 pW/âHz under ultraviolet illumination, which is the
highest for ZnO pân junction devices