163 research outputs found

    The COMPASS Experiment at CERN

    Get PDF
    The COMPASS experiment makes use of the CERN SPS high-intensitymuon and hadron beams for the investigation of the nucleon spin structure and the spectroscopy of hadrons. One or more outgoing particles are detected in coincidence with the incoming muon or hadron. A large polarized target inside a superconducting solenoid is used for the measurements with the muon beam. Outgoing particles are detected by a two-stage, large angle and large momentum range spectrometer. The setup is built using several types of tracking detectors, according to the expected incident rate, required space resolution and the solid angle to be covered. Particle identification is achieved using a RICH counter and both hadron and electromagnetic calorimeters. The setup has been successfully operated from 2002 onwards using a muon beam. Data with a hadron beam were also collected in 2004. This article describes the main features and performances of the spectrometer in 2004; a short summary of the 2006 upgrade is also given.Comment: 84 papes, 74 figure

    S-band electron linac with beam energy of 30…100 MeV

    No full text
    The S-band electron linac has been designed at NSC KIPT to cover an energy range from 30 to 100 MeV. The linac consists of the injector based on evanescent oscillations and the two four-meter long piecewise homogeneous accelerating sections. Each section is supplied with RF power from the KIU-12AM klystron. Variation of mean energy of the beam over a wide range is produced by placing bunches out of the wave crest in the second accelerating section. The report presents layout of the linac as well as simulation results of self-consistent particle dynamics in the linac and its present status.Лінійний прискорювач електронів 10 см - діапазону було розроблено в ННЦ ХФТІ з метою перекрити діапазон енергій 30…100 MeВ. Прискорювач складається з інжектора, основаного на коливаннях, що не розповсюджуються, і двох шматково-однорідних чотириметрових прискорювальних секцій. Кожна секція забезпечується НВЧ-потужністю від клістрона KІУ-12AM. Зміна середньої енергії пучка в широких межах забезпечується прискоренням згустків не на гребені хвилі в другій прискорювальній секції. Представлено структурну схему прискорювача, результати моделювання динаміки частинок в прискорювачі і його поточний стан.Линейный ускоритель электронов 10 см - диапазона был разработан в ННЦ ХФТИ с целью перекрытия диапазона энергий 30…100 MэВ. Ускоритель состоит из инжектора, основанного на не распространяющихся колебаниях и двух кусочно-однородных четырехметровых ускоряющих секций. Каждая секция питается СВЧ-мощностью от клистрона KИУ-12AM. Изменение средней энергии пучка в широких пределах обеспечивается ускорением сгустков не на гребне волны во второй ускоряющей секции. Представлены структурная схема ускорителя, результаты моделирования динамики частиц в ускорителе и его текущее состояние

    Electron linacs in NSC KIPT: R&D and application

    No full text
    A review is given about electron linacs of NSC KIPT and their some applications for research of radiation effects in reactor materials, channeling, plasma-beam interactions, geology (gamma-activation analysis of ore samples), as well as sterilization of single-use medical products, modification of polymers and semiconductors, isotope production for nuclear medicine etc

    Merging GW with DMFT and non-local correlations beyond

    Full text link

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF

    Search for third-generation vector-like leptons in pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    A search for vector-like leptons in multilepton (two, three, or four-or-more electrons plus muons) final states with zero or more hadronic τ-lepton decays is presented. The search is performed using a dataset corresponding to an integrated luminosity of 139 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the LHC. To maximize the separation of signal and background, a machine-learning classifier is used. No excess of events is observed beyond the Standard Model expectation. Using a doublet vector-like lepton model, vector-like leptons coupling to third-generation Standard Model leptons are excluded in the mass range from 130 GeV to 900 GeV at the 95% confidence level, while the highest excluded mass is expected to be 970 GeV

    Search for heavy Higgs bosons with flavour-violating couplings in multi-lepton plus b-jets final states in pp collisions at 13 TeV with the ATLAS detector

    Get PDF
    A search for new heavy scalars with flavour-violating decays in final states with multiple leptons and b-tagged jets is presented. The results are interpreted in terms of a general two-Higgs-doublet model involving an additional scalar with couplings to the top-quark and the three up-type quarks (ρtt, ρtc, and ρtu). The targeted signals lead to final states with either a same-sign top-quark pair, three top-quarks, or four top-quarks. The search is based on a data sample of proton-proton collisions at √s = 13 TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb−1. Events are categorised depending on the multiplicity of light charged leptons (electrons or muons), total lepton charge, and a deep-neural-network output to enhance the purity of each of the signals. Masses of an additional scalar boson mH between 200 − 630 GeV with couplings ρtt = 0.4, ρtc = 0.2, and ρtu = 0.2 are excluded at 95% confidence level. Additional interpretations are provided in models of R-parity violating supersymmetry, motivated by the recent flavour and (g − 2)μ anomalies

    Search for a new heavy scalar particle decaying into a Higgs boson and a new scalar singlet in final states with one or two light leptons and a pair of τ-leptons with the ATLAS detector

    Get PDF
    A search for a new heavy scalar particle X decaying into a Standard Model (SM) Higgs boson and a new singlet scalar particle S is presented. The search uses a proton-proton (pp) collision data sample with an integrated luminosity of 140 fb−1 recorded at a centre-of-mass energy of s√ = 13 TeV with the ATLAS detector at the Large Hadron Collider. The most sensitive mass parameter space is explored in X mass ranging from 500 to 1500 GeV, with the corresponding S mass in the range 200–500 GeV. The search selects events with two hadronically decaying τ-lepton candidates from H → τ+τ− decays and one or two light leptons (ℓ = e, μ) from S → VV (V = W, Z) decays while the remaining V boson decays hadronically or to neutrinos. A multivariate discriminant based on event kinematics is used to separate the signal from the background. No excess is observed beyond the expected SM background and 95% confidence level upper limits between 72 fb and 542 fb are derived on the cross-section σ(pp → X → SH) assuming the same SM-Higgs boson-like decay branching ratios for the S → VV decay. Upper limits on the visible cross-sections σ(pp → X → SH → WWττ) and σ(pp → X → SH → ZZττ) are also set in the ranges 3–26 fb and 6–33 fb, respectively

    Search for heavy resonances decaying into a Z or W boson and a Higgs boson in final states with leptons and b-jets in 139 fb−1 of pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    This article presents a search for new resonances decaying into a Z or W boson and a 125 GeV Higgs boson h, and it targets the νν¯¯¯bb¯¯, ℓ+ℓ−bb¯¯, or ℓ±νbb¯¯ final states, where ℓ = e or μ, in proton-proton collisions at s√ = 13 TeV. The data used correspond to a total integrated luminosity of 139 fb−1 collected by the ATLAS detector during Run 2 of the LHC at CERN. The search is conducted by examining the reconstructed invariant or transverse mass distributions of Zh or Wh candidates for evidence of a localised excess in the mass range from 220 GeV to 5 TeV. No significant excess is observed and 95% confidence-level upper limits between 1.3 pb and 0.3 fb are placed on the production cross section times branching fraction of neutral and charged spin-1 resonances and CP-odd scalar bosons. These limits are converted into constraints on the parameter space of the Heavy Vector Triplet model and the two-Higgs-doublet model

    The ATLAS trigger system for LHC Run 3 and trigger performance in 2022

    Get PDF
    The ATLAS trigger system is a crucial component of the ATLAS experiment at the LHC. It is responsible for selecting events in line with the ATLAS physics programme. This paper presents an overview of the changes to the trigger and data acquisition system during the second long shutdown of the LHC, and shows the performance of the trigger system and its components in the proton-proton collisions during the 2022 commissioning period as well as its expected performance in proton-proton and heavy-ion collisions for the remainder of the third LHC data-taking period (2022–2025)
    corecore