20 research outputs found

    Composition of Fluids Responsible for Gold Mineralization in the Pechenga Structure-Imandra-Varzuga Greenstone Belt, Kola Peninsula, Russia.

    Get PDF
    This study presents the first fluid inclusion data from quartz of albite–carbonate–quartz altered rocks and metasomatic quartzite hosting gold mineralization in the Pechenga structure of the Pechenga– Imandra–Varzuga greenstone belt. A temperature of 275–370°C, pressure of 1.2–4.5 kbar, and the fluid composition of gold-bearing fluid are estimated by microthermometry, Raman spectroscopy, and LA-ICP-MS of individual fluid inclusions, as well as by bulk chemical analyses of fluid inclusions. In particular, the Au and Ag concentrations have been determined in fluid inclusions. It is shown that albite–carbonate–quartz altered rocks and metasomatic quartzite interacted with fluids of similar chemical composition but under different physicochemical conditions. It is concluded that the gold-bearing fluid in the Pechenga structure is similar to that of orogenic gold deposits

    Search for jet extinction in the inclusive jet-pT spectrum from proton-proton collisions at s=8 TeV

    Get PDF
    Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7  fb−1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale

    Searches for electroweak neutralino and chargino production in channels with Higgs, Z, and W bosons in pp collisions at 8 TeV

    Get PDF
    Searches for supersymmetry (SUSY) are presented based on the electroweak pair production of neutralinos and charginos, leading to decay channels with Higgs, Z, and W bosons and undetected lightest SUSY particles (LSPs). The data sample corresponds to an integrated luminosity of about 19.5 fb(-1) of proton-proton collisions at a center-of-mass energy of 8 TeV collected in 2012 with the CMS detector at the LHC. The main emphasis is neutralino pair production in which each neutralino decays either to a Higgs boson (h) and an LSP or to a Z boson and an LSP, leading to hh, hZ, and ZZ states with missing transverse energy (E-T(miss)). A second aspect is chargino-neutralino pair production, leading to hW states with E-T(miss). The decays of a Higgs boson to a bottom-quark pair, to a photon pair, and to final states with leptons are considered in conjunction with hadronic and leptonic decay modes of the Z and W bosons. No evidence is found for supersymmetric particles, and 95% confidence level upper limits are evaluated for the respective pair production cross sections and for neutralino and chargino mass values

    A stable compound of helium and sodium at high pressure

    No full text
    Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable compounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na 2 He, which has a fluorite-Type structure and is stable at pressures >113â €..GPa. We show that the presence of He atoms causes strong electron localization and makes this material insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na 8 cubes. We also predict the existence of Na 2 HeO with a similar structure at pressures above 15â €..GPa. © 2017 Macmillan Publisher Limited part of springer Nature. All rights reserved

    A stable compound of helium and sodium at high pressure

    No full text
    Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable compounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na 2 He, which has a fluorite-Type structure and is stable at pressures >113â €..GPa. We show that the presence of He atoms causes strong electron localization and makes this material insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na 8 cubes. We also predict the existence of Na 2 HeO with a similar structure at pressures above 15â €..GPa. © 2017 Macmillan Publisher Limited part of springer Nature. All rights reserved
    corecore