230 research outputs found
Sensitive survey for 13CO, CN, H2CO, and SO in the disks of T Tauri and Herbig Ae stars II: Stars in Oph and upper Scorpius
We attempt to determine the molecular composition of disks around young
low-mass stars in the Oph region and to compare our results with a
similar study performed in the Taurus-Auriga region. We used the IRAM 30 m
telescope to perform a sensitive search for CN N=2-1 in 29 T Tauri stars
located in the Oph and upper Scorpius regions. CO J=2-1 is
observed simultaneously to provide an indication of the level of confusion with
the surrounding molecular cloud. The bandpass also contains two transitions of
ortho-HCO, one of SO, and the CO J=2-1 line, which provides
complementary information on the nature of the emission. Contamination by
molecular cloud in CO and even CO is ubiquitous. The CN detection
rate appears to be lower than for the Taurus region, with only four sources
being detected (three are attributable to disks). HCO emission is found
more frequently, but appears in general to be due to the surrounding cloud. The
weaker emission than in Taurus may suggest that the average disk size in the
Oph region is smaller than in the Taurus cloud. Chemical modeling shows
that the somewhat higher expected disk temperatures in Oph play a direct
role in decreasing the CN abundance. Warmer dust temperatures contribute to
convert CN into less volatile forms. In such a young region, CN is no longer a
simple, sensitive tracer of disks, and observations with other tracers and at
high enough resolution with ALMA are required to probe the gas disk population.Comment: 18 pages, 5 figures, accepted for publication in A&
A sensitive survey for 13CO, CN, H2CO and SO in the disks of T Tauri and Herbig Ae stars
We use the IRAM 30-m telescope to perform a sensitive search for CN N=2-1 in
42 T Tauri or Herbig Ae systems located mostly in the Taurus-Auriga region.
CO J=2-1 is observed simultaneously to indicate the level of confusion
with the surrounding molecular cloud. The bandpass also contains two
transitions of ortho-HCO, one of SO and the CO J=2-1 line which
provide complementary information on the nature of the emission.
While CO is in general dominated by residual emission from the cloud,
CN exhibits a high disk detection rate % in our sample. We even report CN
detection in stars for which interferometric searches failed to detect
CO, presumably because of obscuration by a foreground, optically thick,
cloud. Comparison between CN and o-HCO or SO line profiles and intensities
divide the sample in two main categories. Sources with SO emission are bright
and have strong HCO emission, leading in general to [HCO/CN].
Furthermore, their line profiles, combined with a priori information on the
objects, suggest that the emission is coming from outflows or envelopes rather
than from a circumstellar disk. On the other hand, most sources have
[HCO/CN], no SO emission, and some of them exhibit clear
double-peaked profiles characteristics of rotating disks. In this second
category, CN is likely tracing the proto-planetary disks. From the line flux
and opacity derived from the hyperfine ratios, we constrain the outer radii of
the disks, which range from 300 to 600 AU. The overall gas disk detection rate
(including all molecular tracers) is , and decreases for fainter
continuum sources.
This study shows that gas disks, like dust disks, are ubiquitous around young
PMS stars in regions of isolated star formation, and that a large fraction of
them have AU.Comment: 31 pages (including 59 figures
Searching for sub-stellar companion into the LkCa15 proto-planetary disk
Recent sub-millimetric observations at the Plateau de Bure interferometer
evidenced a cavity at ~ 46 AU in radius into the proto-planetary disk around
the T Tauri star LkCa15 (V1079 Tau), located in the Taurus molecular cloud.
Additional Spitzer observations have corroborated this result possibly
explained by the presence of a massive (>= 5 MJup) planetary mass, a brown
dwarf or a low mass star companion at about 30 AU from the star. We used the
most recent developments of high angular resolution and high contrast imaging
to search directly for the existence of this putative companion, and to bring
new constraints on its physical and orbital properties. The NACO adaptive
optics instrument at VLT was used to observe LkCa15 using a four quadrant phase
mask coronagraph to access small angular separations at relatively high
contrast. A reference star at the same parallactic angle was carefully observed
to optimize the quasi-static speckles subtraction (limiting our sensitivity at
less than 1.0). Although we do not report any positive detection of a faint
companion that would be responsible for the observed gap in LkCa15's disk
(25-30 AU), our detection limits start constraining its probable mass,
semi-major axis and eccentricity. Using evolutionary model predictions, Monte
Carlo simulations exclude the presence of low eccentric companions with masses
M >= 6 M Jup and orbiting at a >= 100 AU with significant level of confidence.
For closer orbits, brown dwarf companions can be rejected with a detection
probability of 90% down to 80 AU (at 80% down to 60 AU). Our detection limits
do not access the star environment close enough to fully exclude the presence
of a brown dwarf or a massive planet within the disk inner activity (i.e at
less than 30 AU). Only, further and higher contrast observations should unveil
the existence of this putative companion inside the LkCa15 disk.Comment: 6 pages, 4 figures, accepted for publication in A&
Dynamical Masses of Low Mass Stars in the Taurus and Ophiuchus Star Forming Regions
We report new dynamical masses for 5 pre-main sequence (PMS) stars in the
L1495 region of the Taurus star-forming region (SFR) and 6 in the L1688 region
of the Ophiuchus SFR. Since these regions have VLBA parallaxes these are
absolute measurements of the stars' masses and are independent of their
effective temperatures and luminosities. Seven of the stars have masses
solar masses, thus providing data in a mass range with little data, and of
these, 6 are measured to precision . We find 8 stars with masses in the
range 0.09 to 1.1 solar mass that agree well with the current generation of PMS
evolutionary models. The ages of the stars we measured in the Taurus SFR are in
the range 1-3 MY, and MY for those in L1688. We also measured the
dynamical masses of 14 stars in the ALMA archival data for Akeson~\&~Jensen's
Cycle 0 project on binaries in the Taurus SFR. We find that the masses of 7 of
the targets are so large that they cannot be reconciled with reported values of
their luminosity and effective temperature. We suggest that these targets are
themselves binaries or triples.Comment: 20 page
Millimetre continuum observations of comet C/2009 P1 (Garradd)
Little is known about the physical properties of the nuclei of Oort cloud
comets. Measuring the thermal emission of a nucleus is one of the few means for
deriving its size and constraining some of its thermal properties. We attempted
to measure the nucleus size of the Oort cloud comet C/2009 P1 (Garradd). We
used the Plateau de Bure Interferometer to measure the millimetric thermal
emission of this comet at 157 GHz (1.9 mm) and 266 GHz (1.1 mm). Whereas the
observations at 266 GHz were not usable due to bad atmospheric conditions, we
derived a 3-sigma upper limit on the comet continuum emission of 0.41 mJy at
157 GHz. Using a thermal model for a spherical nucleus with standard thermal
parameters, we found an upper limit of 5.6 km for the radius. The dust
contribution to our signal is estimated to be negligible. Given the water
production rates measured for this comet and our upper limit, we estimated that
Garradd was very active, with an active fraction of its nucleus larger than
50%.Comment: Accepted for publication in Astronomy & Astrophysics. 5 pages, 2
figure
Sub-arcsec imaging of the AB Aur molecular disk and envelope at millimeter wavelengths: a non Keplerian disk
We present sub-arcsecond images of AB Auriga obtained with the IRAM Plateau
de Bure interferometer in the isotopologues of CO, and in continuum at 3 and
1.3 mm. Instead of being centrally peaked, the continuum emission is dominated
by a bright, asymmetric (spiral-like) feature at about 140 AU from the central
star. The large scale molecular structure suggests the AB Aur disk is inclined
between 23 and 43 degrees, but the strong asymmetry of the continuum and
molecular emission prevents an accurate determination of the inclination of the
inner parts. We find significant non-Keplerian motion, with a best fit exponent
for the rotation velocity law of 0.41 +/- 0.01, but no evidence for radial
motions. The disk has an inner hole about 70 AU in radius. The disk is warm and
shows no evidence of depletion of CO. The dust properties suggest the dust is
less evolved than in typical T Tauri disks. Both the spiral-like feature and
the departure from purely Keplerian motions indicates the AB Aur disk is not in
quasi-equilibrium. Disk self-gravity is insufficient to create the
perturbation. This behavior may be related either to an early phase of star
formation in which the Keplerian regime is not yet fully established and/or to
a disturbance of yet unknown origin. An alternate, but unproven, possibility is
that of a low mass companion located about 40 AU from AB Aur.Comment: 10 pages, 5 figures, accepted for publication in Astronomy &
Astrophysic
Chemistry in Disks. II. -- Poor molecular content of the AB Aur disk
We study the molecular content and chemistry of a circumstellar disk
surrounding the Herbig Ae star AB Aur at (sub-)millimeter wavelengths. Our aim
is to reconstruct the chemical history and composition of the AB Aur disk and
to compare it with disks around low-mass, cooler T Tauri stars. We observe the
AB Aur disk with the IRAM Plateau de Bure Interferometer in the C- and D-
configurations in rotational lines of CS, HCN, C2H, CH3OH, HCO+, and CO
isotopes. Using an iterative minimization technique, observed columns densities
and abundances are derived. These values are further compared with results of
an advanced chemical model that is based on a steady-state flared disk
structure with a vertical temperature gradient, and gas-grain chemical network
with surface reactions. We firmly detect HCO+ in the 1--0 transition,
tentatively detect HCN, and do not detect CS, C2H, and CH3OH. The observed HCO+
and 13CO column densities as well as the upper limits to the column densities
of HCN, CS, C2H, and CH3OH are in good agreement with modeling results and
those from previous studies. The AB Aur disk possesses more CO, but is less
abundant in other molecular species compared to the DM Tau disk. This is
primarily caused by intense UV irradiation from the central Herbig A0 star,
which results in a hotter disk where CO freeze out does not occur and thus
surface formation of complex CO-bearing molecules might be inhibited.Comment: Accepted by A&
GG Tau: the fifth element
We aim at unveiling the observational imprint of physical mechanisms that
govern planetary formation in young, multiple systems. In particular, we
investigate the impact of tidal truncation on the inner circumstellar disks. We
observed the emblematic system GG Tau at high-angular resolution: a
hierarchical quadruple system composed of low-mass T Tauri binary stars
surrounded by a well-studied, massive circumbinary disk in Keplerian rotation.
We used the near-IR 4-telescope combiner PIONIER on the VLTI and
sparse-aperture-masking techniques on VLT/NaCo to probe this proto-planetary
system at sub-AU scales. We report the discovery of a significant closure-phase
signal in H and Ks bands that can be reproduced with an additional low-mass
companion orbiting GG Tau Ab, at a (projected) separation rho = 31.7 +/- 0.2mas
(4.4 au) and PA = 219.6 +/- 0.3deg. This finding offers a simple explanation
for several key questions in this system, including the missing-stellar-mass
problem and the asymmetry of continuum emission from the inner dust disks
observed at millimeter wavelengths. Composed of now five co-eval stars with
0.02 <= Mstar <= 0.7 Msun, the quintuple system GG Tau has become an ideal test
case to constrain stellar evolution models at young ages (few 10^6yr).Comment: 5pages, 3 figures, 1 appendix (online material
A search for linear polarization in the active galactic nucleus 3C 84 at 239 and 348 GHz
We report a search for linear polarization in the active galactic nucleus
(AGN) 3C 84 (NGC 1275) at observed frequencies of 239 GHz and 348 GHz,
corresponding to rest-frame frequencies of 243 GHz and 354 GHz. We collected
polarization data with the IRAM Plateau de Bure Interferometer via Earth
rotation polarimetry. We do not detect linear polarization. Our analysis finds
3-sigma upper limits on the degree of polarization of 0.5% and 1.9% at 239 GHz
and 348 GHz, respectively. We regard the influence of Faraday conversion as
marginal, leading to expected circular polarizations <0.3%. Assuming
depolarization by a local Faraday screen, we constrain the rotation measure, as
well as the fluctuations therein, to be 10^6 rad/m^2. From this we estimate
line-of-sight magnetic field strengths of >100 microG. Given the physical
dimensions of 3C 84 and its observed structure, the Faraday screen appears to
show prominent small-scale structure, with \DeltaRM > 10^6 rad/m^2 on projected
spatial scales <1 pc.Comment: 7 pages, 4 figures. Accepted by MNRA
The First IRAM/PdBI Polarimetric Millimeter Survey of Active Galactic Nuclei. I. Global Properties of the Sample
We have studied the linear polarization of 86 active galactic nuclei (AGN) in
the observed frequency range 80-267 GHz (3.7-1.1mm in wavelength),
corresponding to rest-frame frequencies 82-738 GHz, with the IRAM Plateau de
Bure Interferometer (PdBI). The large number of measurements, 441, makes our
analysis the largest polarimetric AGN survey in this frequency range to date.
We extracted polarization parameters via earth rotation polarimetry with
unprecedented median precisions of ~0.1% in polarization fractions and ~1.2
degrees in polarization angles. For 73 of 86 sources we detect polarization at
least once. The degrees of polarization are as high as ~19%, with the median
over all sources being ~4%. Source fluxes and polarizations are typically
highly variable, with fractional variabilities up to ~60%. We find that BLLac
sources have on average the highest level of polarization. There appears to be
no correlation between degree of polarization and redshift, indicating that
there has been no substantial change of polarization properties since z~2.4.
Our polarization and spectral index distributions are in good agreement with
results found from various samples observed at cm/radio wavelengths; thus our
frequency range is likely tracing the signature of synchrotron radiation
without noticeable contributions from other emission mechanisms. The
"millimeter-break" located at frequencies >1 THz appears to be not detectable
in the frequency range covered by our survey.Comment: 19 pages, 9 figures, 2 long tables (p. 12-19). Accepted by A&A
- …
