678 research outputs found

    Rechtliche Einordnung von Grünbrücken bei Aus- und Neubauten sowie bestehenden Bundesfernstraßen

    Get PDF
    Angesichts der enormen Zerschneidungswirkung von Bundesfernstraßen werden Grünbrücken in der Bundesrepublik vermehrt errichtet, sodass sich die Frage der rechtlichen Einordnung dieser bei Aus- und Neubau, aber auch bei bestehenden Bundesfernstraßen stellt. Der Beitrag geht dabei auf ausgewählte naturschutzrechtliche Instrumente ein, beleuchtet fachplanungsrechtliche Besonderheiten und stellt die Frage der (finanziellen) Verhältnismäßigkeit von Grünbrücken

    Individual dispersal decisions affect fitness via maternal rank effects in male rhesus macaques

    Get PDF
    Natal dispersal may have considerable social, ecological and evolutionary consequences. While speciesspecific dispersal strategies have received much attention, individual variation in dispersal decisions and its fitness consequences remain poorly understood. We investigated causes and consequences of natal dispersal age in rhesus macaques (Macaca mulatta), a species with male dispersal. Using long-term demographic and genetic data from a semi-free ranging population on Cayo Santiago, Puerto Rico, we analysed how the social environment such as maternal family, group and population characteristics affected the age at which males leave their natal group. While natal dispersal age was unrelated to most measures of group or population structure, our study confirmed earlier findings that sons of high-ranking mothers dispersed later than sons of low-ranking ones. Natal dispersal age did not affect males\\\'' subsequent survival, but males dispersing later were more likely to reproduce. Late dispersers were likely to start reproducing while still residing in their natal group, frequently produced extra-group offspring before natal dispersal and subsequently dispersed to the group in which they had fathered offspring more likely than expected. Hence, the timing of natal dispersal was affected by maternal rank and influenced male reproduction, which, in turn affected which group males dispersed to

    Radiative and mechanical feedback into the molecular gas of NGC 253

    Get PDF
    Starburst galaxies are undergoing intense periods of star formation. Understanding the heating and cooling mechanisms in these galaxies can give us insight to the driving mechanisms that fuel the starburst. Molecular emission lines play a crucial role in the cooling of the excited gas. With SPIRE on the Herschel Space Observatory we have observed the rich molecular spectrum towards the central region of NGC 253. CO transitions from J=4-3 to 13-12 are observed and together with low-J line fluxes from ground based observations, these lines trace the excitation of CO. By studying the CO excitation ladder and comparing the intensities to models, we investigate whether the gas is excited by UV radiation, X-rays, cosmic rays, or turbulent heating. Comparing the 12^{12}CO and 13^{13}CO observations to large velocity gradient models and PDR models we find three main ISM phases. We estimate the density, temperature,and masses of these ISM phases. By adding 13^{13}CO, HCN, and HNC line intensities, we are able to constrain these degeneracies and determine the heating sources. The first ISM phase responsible for the low-J CO lines is excited by PDRs, but the second and third phases, responsible for the mid to high-J CO transitions, require an additional heating source. We find three possible combinations of models that can reproduce our observed molecular emission. Although we cannot determine which of these are preferable, we can conclude that mechanical heating is necessary to reproduce the observed molecular emission and cosmic ray heating is a negligible heating source. We then estimate the mass of each ISM phase; 6×1076\times 10^7 M_\odot for phase 1 (low-J CO lines), 3×1073\times 10^7 M_\odot for phase 2 (mid-J CO lines), and 9×1069\times 10^6 M_\odot for phase 3 (high-J CO lines) for a total system mass of 1×1081\times10^{8} M_\odot

    Pulse processing routines for neutron time-of-flight data

    Full text link
    A pulse shape analysis framework is described, which was developed for n_TOF-Phase3, the third phase in the operation of the n_TOF facility at CERN. The most notable feature of this new framework is the adoption of generic pulse shape analysis routines, characterized by a minimal number of explicit assumptions about the nature of pulses. The aim of these routines is to be applicable to a wide variety of detectors, thus facilitating the introduction of the new detectors or types of detectors into the analysis framework. The operational details of the routines are suited to the specific requirements of particular detectors by adjusting the set of external input parameters. Pulse recognition, baseline calculation and the pulse shape fitting procedure are described. Special emphasis is put on their computational efficiency, since the most basic implementations of these conceptually simple methods are often computationally inefficient.Comment: 13 pages, 10 figures, 5 table

    Measuring space-time variation of the fundamental constants with redshifted submillimetre transitions of neutral carbon

    Full text link
    We compare the redshifts of neutral carbon and carbon monoxide in the redshifted sources in which the fine structure transition of neutral carbon, [CI], has been detected, in order to measure space-time variation of the fundamental constants. Comparison with the CO rotational lines measures gives the same combination of constants obtained from the comparison fine structure line of singly ionised carbon, [CII]. However, neutral carbon has the distinct advantage that it may be spatially coincident with the carbon monoxide, whereas [CII] could be located in the diffuse medium between molecular clouds, and so any comparison with CO could be dominated by intrinsic velocity differences. Using [CI], we obtain a mean variation of dF/F = (-3.6 +/- 8.5) x 10^-5, over z = 2.3 - 4.1, for the eight [CI] systems, which degrades to (-1.5+/- 11) x 10^-5, over z = 2.3 - 6.4 when the two [CII] systems are included. That is, zero variation over look-back times of 10.8-12.8 Gyr. However, the latest optical results indicate a spatial variation in alpha, which describes a dipole and we see the same direction in dF/F. This trend is, however, due to a single source for which the [CI] spectrum is of poor quality. This also applies to one of the two [CII] spectra previously used to find a zero variation in alpha^2/mu. Quantifying this, we find an anti-correlation between |dF/F| and the quality of the carbon detection, as measured by the spectral resolution, indicating that the typical values of >50 km/s, used to obtain a detection, are too coarse to reliably measure changes in the constants. From the fluxes of the known z > 1 CO systems, we predict that current instruments are incapable of the sensitivities required to measure changes in the constants through the comparison of CO and carbon lines. We therefore discuss in detail the use of ALMA for such an undertaking ... ABRIDGEDComment: Accepted for publication in Section 3 - Cosmology (including clusters of galaxies) of Astronomy and Astrophysic

    Do Disease Stories Need a Hero? Effects of Human Protagonists on a Narrative Visualization about Cerebral Small Vessel Disease

    Get PDF
    Authors use various media formats to convey disease information to a broad audience, from articles and videos to interviews or documentaries. These media often include human characters, such as patients or treating physicians, who are involved with the disease. While artistic media, such as hand-crafted illustrations and animations are used for health communication in many cases, our goal is to focus on data-driven visualizations. Over the last decade, narrative visualization has experienced increasing prominence, employing storytelling techniques to present data in an understandable way. Similar to classic storytelling formats, narrative medical visualizations may also take a human character-centered design approach. However, the impact of this form of data communication on the user is largely unexplored. This study investigates the protagonist's influence on user experience in terms of engagement, identification, self-referencing, emotional response, perceived credibility, and time spent in the story. Our experimental setup utilizes a character-driven story structure for disease stories derived from Joseph Campbell's Hero's Journey. Using this structure, we generated three conditions for a cerebral small vessel disease story that vary by their protagonist: (1) a patient, (2) a physician, and (3) a base condition with no human protagonist. These story variants formed the basis for our hypotheses on the effect of a human protagonist in disease stories, which we evaluated in an online study with 30 participants. Our findings indicate that a human protagonist exerts various influences on the story perception and that these also vary depending on the type of protagonist.publishedVersio

    Goldstone models in D+1 dimensions, D=3,4,5, supporting stable and zero topological charge solutions

    Get PDF
    We study finite energy static solutions to a global symmetry breaking Goldstone model described by an isovector scalar field in D+1 spacetime dimensions. Both topologically stable multisolitons with arbitrary winding numbers, and zero topological charge soliton--antisoliton solutions are constructed numerically in D=3,4,5. We have explored the types of symmetries the systems should be subjected to, for there to exist multisoliton and soliton--antisoliton pairs in D=3,4,5,6. These findings are underpinned by constructing numerical solutions in the D5D\le 5 examples. Subject to axial symmetry, only multisolitons of all topological charges exist in even D, and in odd D, only zero and unit topological charge solutions exist. Subjecting the system to weaker than axial symmetries, results in the existence of all the possibilities in all dimensions. Our findings apply also to finite 'energy' solutions to Yang--Mills and Yang-Mills--Higgs systems, and in principle also sigma models.Comment: 29 pages, 6 figure

    Properties of the molecular gas in a starbursting QSO at z=1.83 in the COSMOS field

    Get PDF
    Using the IRAM 30m telescope, we have detected the CO J=2-1, 4-3, 5-4, and 6-5 emission lines in the millimeter-bright, blank-field selected AGN COSMOS J100038+020822 at redshift z=1.8275. The sub-local thermodynamic equilibrium (LTE) excitation of the J=4 level implies that the gas is less excited than that in typical nearby starburst galaxies such as NGC253, and in the high-redshift quasars studied to date, such as J1148+5251 or BR1202-0725. Large velocity gradient (LVG) modeling of the CO line spectral energy distribution (CO SED; flux density vs. rotational quantum number) yields H2 densities in the range 10^{3.5}--10^{4.0} cm-3, and kinetic temperatures between 50 K and 200 K. The H2 mass of (3.6 - 5.4) x 10^{10} M_sun implied by the line intensities compares well with our estimate of the dynamical mass within the inner 1.5 kpc of the object. Fitting a two-component gray body spectrum, we find a dust mass of 1.2 x 10^{9} M_sun, and cold and hot dust temperatures of 42+/-5 K and 160+/-25 K, respectively. The broad MgII line allows us to estimate the mass of the central black hole as 1.7 x 10^{9} M_sun. Although the optical spectrum and multi-wavelength SED matches those of an average QSO, the molecular gas content and dust properties resemble those of known submillimeter galaxies (SMGs). The optical morphology of this source shows tidal tails that suggest a recent interaction or merger. Since it shares properties of both starburst and AGN, this object appears to be in a transition from a strongly starforming submillimeter galaxy to a QSO.Comment: Accepted for publication in Astronomy & Astrophysics (A&A

    Diagnostics of the Molecular Component of PDRs with Mechanical Heating

    Get PDF
    Context. Multitransition CO observations of galaxy centers have revealed that significant fractions of the dense circumnuclear gas have high kinetic temperatures, which are hard to explain by pure photon excitation, but may be caused by dissipation of turbulent energy. Aims. We aim to determine to what extent mechanical heating should be taken into account while modelling PDRs. To this end, the effect of dissipated turbulence on the thermal and chemical properties of PDRs is explored. Methods. Clouds are modelled as 1D semi-infinite slabs whose thermal and chemical equilibrium is solved for using the Leiden PDR-XDR code. Results. In a steady-state treatment, mechanical heating seems to play an important role in determining the kinetic temperature of the gas in molecular clouds. Particularly in high-energy environments such as starburst galaxies and galaxy centers, model gas temperatures are underestimated by at least a factor of two if mechanical heating is ignored. The models also show that CO, HCN and H2 O column densities increase as a function of mechanical heating. The HNC/HCN integrated column density ratio shows a decrease by a factor of at least two in high density regions with n \sim 105 cm-3, whereas that of HCN/HCO+ shows a strong dependence on mechanical heating for this same density range, with boosts of up to three orders of magnitude. Conclusions. The effects of mechanical heating cannot be ignored in studies of the molecular gas excitation whenever the ratio of the star formation rate to the gas density is close to, or exceeds, 7 \times 10-6 M yr-1 cm4.5 . If mechanical heating is not included, predicted column densities are underestimated, sometimes even by a few orders of magnitude. As a lower bound to its importance, we determined that it has non-negligible effects already when mechanical heating is as little as 1% of the UV heating in a PDR.Comment: 26 pages, 14 figures in the text and 13 figures as supplementary material. Accepted for publication in A&

    Pulse processing routines for neutron time-of-flight data

    Get PDF
    A pulse shape analysis framework is described, which was developed for n_TOF-Phase3, the third phase in the operation of the n_TOF facility at CERN. The most notable feature of this new framework is the adoption of generic pulse shape analysis routines, characterized by a minimal number of explicit assumptions about the nature of pulses. The aim of these routines is to be applicable to a wide variety of detectors, thus facilitating the introduction of the new detectors or types of detectors into the analysis framework. The operational details of the routines are suited to the specific requirements of particular detectors by adjusting the set of external input parameters. Pulse recognition, baseline calculation and the pulse shape fitting procedure are described. Special emphasis is put on their computational efficiency, since the most basic implementations of these conceptually simple methods are often computationally inefficient.Croatian Science Foundation - Project No. 168
    corecore