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Abstract

We study finite energy static solutions to a global symmetry breaking Goldstone
model described by an isovector scalar field in D + 1 spacetime dimensions. Both
topologically stable multisolitons with arbitrary winding numbers, and zero topological
charge soliton–antisoliton solutions are constructed numerically in D = 3, 4, 5. We
have explored the types of symmetries the systems should be subjected to, for there
to exist multisoliton and soliton–antisoliton pairs in D = 3, 4, 5, 6. These findings are
underpinned by constructing numerical solutions in the D ≤ 5 examples. Subject to
axial symmetry, only multisolitons of all topological charges exist in even D, and in
odd D, only zero and unit topological charge solutions exist. Subjecting the system
to weaker than axial symmetries, results in the existence of all the possiblilities in
all dimensions. Our findings apply also to finite ’energy’ solutions to Yang–Mills and
Yang-Mills–Higgs systems, and in principle also sigma models.

1 Introduction

Very early in the history of field theory solitons, interest in the existence of zero topological
charge solutions arose. In the case of the Yang–Mills (YM) instantons [1] in D = 4 Euclidean
space, which are selfdual, this raised the question of existence of non-selfdual [2, 3, 4] solu-
tions, while even earlier this question was investigated [5] in the case of magnetic monopoles
of the YM-Higgs (YMH) model in D = 3. More recently, concrete numerical constructions
of monopole–antimonopole solutions [7, 8, 9] to the YMH model in D = 3, instanton–
antiinstanton solutions [10] to the YM model in D = 4, as well as soliton–antisoliton solu-
tions [11] to a Goldstone model in D = 3, were given.

The potential relevance of field theory soliton–antisolitons in higher dimensions rests in
the fact that they describe on BPS field configurations that may be useful in the descrip-
tion of brane–antibrane configurations. Such solutions can be the zero topological charge
counterparts of higher dimensional instantons [13] and of monopoles [14], or of the solitons
of the symmetry breaking Goldstone type models [15] arising as the gauge decoupling lim-
its of higher dimensional monopole models [14]. These Goldstone models have not found
any physical applications to date, but as prototype systems modeling higher dimensional
monopoles without the burden of gauge degrees of freedom, they can be useful for example
in providing backgrounds on which Dirac equations [16] in all dimensions can be solved, or
possibly also for gravitating monopoles. Here, they will prove very useful in studying zero
topological charge solutions in higher dimensions.
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Zero topological charge solutions to such a Goldstone model in D = 3 were recently given
in [11]. The model in [11] is the gauge decoupling limit of the YMH model descending from
the p = 2 member of the YM hierarchy introduced in [13] and is the simplest example. In the
present paper we will extend this study to the Goldstone model descending from the p = 3
member of the YM hierarchy. In contrast to the p = 2 Goldstone model which supports
finite energy solitons only in D = 3, the p = 3 Goldstone model enables us to study solutions
in dimensions D = 3, 4, 5, allowed by the Derrick scaling rule. This is very important for
our purposes here as will be explained below. As such, the p = 3 Goldstone model will serve
as a vehicle for us to investigate zero topological solutions in the simplest possible technical
setting.

The main objective of this work is to find out: subject to what symmetries and for
what boundary conditions do such solutions exist? We have presented several numerically
constructed solutions in dimensions D ≤ 5, by way of underpinning our findings. While
our symmetry considerations cover the dimensions 3 ≤ D ≤ 6, the concrete numerical
constructions are limited to D = 3, 4, 5 in the p = 3 Goldstone model, covering both even
and odd dimensions, allowing us to make a classification of the said conditions. Our study
addresses the question as to what are the requisite ingredients in the construction of zero
topological charge solitons in higher dimensions, highlighting the distinction between even
and odd dimensions in this respect. We find that such solutions can be accommodated by
imposing the requisite boundary conditions for systems subject to the appropriate symmetry,
in all dimensions. Stated most succinctly, subject to axial symmetry only multisolitons of
arbitrary charges exist in even D, while in odd D zero and unit topological charge solutions
can exist. By imposing less stringent symmetries than axial, all possible types of solutions
can be constructed in any dimension.

The symmetries considered are at one extreme axial, namely spherical symmetry in a
IRD−1 subspace of IRD, and at the other azimuthal, namely rotational symmetry in a IR2

subspace of IRD. In between, we have explored the imposition of all intermediate cases,
namely imposition of rotational symmetry in all the other subspaces IRn of IRD. In addition,
we have considered imposition of multi-azimuthal symmetries on all IR2 subspaces of IRD.

Concerning the numerical constructions, our reason for limiting to the p = 3 Goldstone
model, and to D ≤ 5, is that otherwise it would be necessary to carry out numerical inte-
grations in more than 2 dimensions, which is beyond the scope of this work.

In Section 2 we have introduced the models to be employed, along with the topological
charge densities providing the lower bounds on the energies. Section 3 is concerned with the
imposition of symmetries, i.e. stating the axial, azimuthal, intermediate and multi-azimuthal
Ansätze. In particular, the energy density functionals of the model, for the dimensions in
which numerical solutions will be constructed, are subjected to the spherical, axial and
bi-azimuthal symmetries. Subjecting the corresponding topological charge densities to sym-
metries is carried out in Section 4. Section 5 contains all the numerical results, which verify
the assertions presented in the previous Section, 4, concerning the symmetry properties that
zero topological charge solutions must have. In Section 6 we summarise our results and
extend the discussion of symmetries to beyond the particular simple models employed here.
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2 The model and the topological charge

The symmetry breaking models in D = 3, 4 and 5 spatial dimensions, to which we refer as
Goldstone models, are described by a scalar isovector field φa, a = 1, 2, 3, a = 1, 2, 3, 4 and
a = 1, 2, 3, 4, 5 in each dimension, respectively.

There is such a hierarchy of models [15] that arise from the gauge decoupled limit of
the D−dimensional SO(D) gauged Higgs (YMH) model descended from the p-th member of
the Yang-Mills (YM) hierarchy on IRD × S4p−D. Here we have chosen the simplest of these
that can accommodate D = 3, 4, 5, while satisfying the Derrick scaling requirement for the
existence of finite energy solutions. In the present case this is the YMH model that descends
from the p = 3-rd member of the YM hierarchy. Our Goldstone model here is the gauge
decoupled limit of this YMH system. Using the notation

φaµ = ∂iφ
a , φabµν = ∂[µφ

a∂ν]φ
b , φabcµνρ = ∂[µφ

a∂νφ
b∂ρ]φ

c ,

with the brackets [µν...] implying total antisymmetrisation, the static energy density func-
tional is

E(p=3) = λ0

(

η2 − |φa|2
)6

+ λ1

(

η2 − |φb|2
)4 ∣

∣φaµ
∣

∣

2
+ λ2

(

η2 − |φb|2
)2 ∣

∣φabµν
∣

∣

2
+ λ3

∣

∣φabcµνρ
∣

∣

2
. (1)

All the dimensionless constants λ0, λ1, λ2 and λ3 must be positive if the relevant topological
lower bounds in each dimension are to be valid. The model (1) is ad hoc rather than a
dimensionally descended, only inasfar as the numerical values of these dimensionless coupling
constants, which are otherwise fixed by the descent mechanism, are constrained only to be
positive. Of course, any of these constants can also vanish, provided that the absence of the
corresponding term in (1) does not violate the Derrick scaling requirement.

The most important feature of models such as (1) is that the order parameter field φa

is a relic of a Higgs field and has the same dimensions (L−1) as a connection, and the finite
energy conditions allow the symmetry breaking boundary conditions

lim
R→0

|φa| = 0 , lim
R→∞

|φa| = η , (2)

R being the radial coordinate in IRD, this resulting in monopole-like asymptotics for our
solitons.

The presence of the symmetry breaking potential in (1), multiplying λ0, has no quanti-
tative effect on the solutions, so it will be ignored henceforth.

In the next Section, where symmetries will be imposed, we will concentrate only on the
terms

∣

∣φaµ
∣

∣

2
,

∣

∣φabµν
∣

∣

2
,

∣

∣φabcµνρ
∣

∣

2
(3)

and will delay the incorporation of the factors
(

η2 − |φb|2
)2

and
(

η2 − |φb|2
)4

till the Section
on numerics, since imposition of symmetries on these last terms is achieved rather trivially.

The topological charge density bounding the energy density functional from below can be
stated simply in terms of Bogomol’nyi inequalities, separately for each dimension D = 3, 4
and 5.
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In D = 3 the inequality

(

η2 − |φ|2
)2

∣

∣

∣

∣

(

η2 − |φ|2
)

φcρ −
1

2!2
εµνρε

abcφabµν

∣

∣

∣

∣

2

≥ 0 (4)

leads to the lower bound 1

(

η2 − |φ|2
)4 ∣

∣φaµ
∣

∣

2
+

1

4

(

η2 − |φ|2
)2 ∣

∣φabµν
∣

∣

2 ≥ εµνρε
abc

(

η2 − |φ|2
)3
φµφνφρ ≡ ̺3 . (5)

In (4)-(5), we have denoted |φa|2 by |φ|2.
In D = 4 the inequalities

(

η2 − |φ|2
)2

∣

∣

∣

∣

φabµν −
1

2!2
εµνρσε

abcdφcdρσ

∣

∣

∣

∣

2

≥ 0

∣

∣

∣

∣

(

η2 − |φ|2
)2
φcρ −

1

3!
εµνρσε

abcdφabcµνρ

∣

∣

∣

∣

2

≥ 0 (6)

lead to the lower bound

1

4

(

η2 − |φ|2
)4 ∣

∣φaµ
∣

∣

2
+

1

2

(

η2 − |φ|2
)2 ∣

∣φabµν
∣

∣

2
+

1

4

∣

∣φabcµνρ
∣

∣

2 ≥ εµνρσε
abcd

(

η2 − |φ|2
)2
φµφνφρφσ ≡ ̺4 .

(7)

In D = 5 the inequality

∣

∣

∣

∣

(

η2 − |φ|2
)

φabµν −
1

223!
εµνρστε

abcdeφcdeρστ

∣

∣

∣

∣

2

≥ 0

leads to the lower bound

(

η2 − |φ|2
)2 ∣

∣φabµν
∣

∣

2
+

1

4

∣

∣φabcµνρ
∣

∣

2 ≥ εµνρσε
abcd

(

η2 − |φ|2
)

φµφνφρφσφτ ≡ ̺5 . (8)

Each of the three topological charge densities ̺3, ̺4 and ̺5 is a total divergence, which
we denote as ̺3 = ∂µΩ

(3)
µ , ̺4 = ∂µΩ

(4)
µ and ̺5 = ∂µΩ

(5)
µ , respectively, the surface integrals

of Ω
(D)
µ yielding the topological charge in each dimension D = 3, 4, 5. In this paper we will

refer to the densities Ω
(D)
µ as topological currents. Now these topological charges are simply

numerical multiples of the respective winding number densities

̺
(0)
D = εµ1µ1...µD

εa1a2...aD φa1µ1
φa2µ2

...φaD

µD
≡ ∂µ1

ω(D)
µ1

(9)

which are the surface integrals of the winding number currents

ω(D)
µ1

= εµ1µ1...µD
εa1a2...aD φa1φa2µ2

...φaD

µD
. (10)

1Note that the D = 3 model employed here is slightly different from that in [11], the latter being the
gauge decoupled version of the p = 2 YMH model, in contrast to the gauge decoupled version of the p = 3
YMH model here.
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The topological charges q3, q4 and q5, which are the volume integrals of the densities ̺3,
̺4 and ̺5 defined in (5), (7) and (8) respectively, are in turn equal to the surface integrals
of the topological currents

Ω(3)
µ = εµνρε

abc

[

η6 − 9

5
η4 |φ|2 +

9

7
η2

(

|φ|2
)2 − 1

3

(

|φ|2
)3

]

φaφbνφ
c
ρ

Ω(4)
µ = εµνρσε

abcd

[

η4 − 4

3
η2 |φ|2 +

1

2
η2

(

|φ|2
)2

]

φaφbνφ
c
ρφ

d
σ (11)

Ω(5)
µ = εµνρστε

abcde

[

η2 − 5

7
η2 |φ|2

]

φaφbνφ
c
ρφ

d
σφ

e
τ .

It is now obvious, in light of the asymptotic boundary value in (2), that q3, q4 and q5 are
multiples of the winding numbers, namely the surface integrals of the currents (10), with the
numbers 16

105
, 1

6
and 1

7
, respectively.

3 Imposition of symmetries

This section is divided into four subsections, in each of which the three building blocks in (3)
will be subjected to spherical, axial, azimuthal, and in 4 dimensions only, the bi-azimuthal
symmetries respectively. We shall also state the tri-azimuthal Ansatz, only in 6 dimensions,
but will not display the building blocks (3) subject to it because in 6 dimensions the Derrick
scaling requires an octic term beyond these, whose numerical pursuit is beyond the scope
of this work. The symmetry breaking selfinteraction potential (η2 − |φa|2)6 will be ignored,
instead the boundary condition (2) it would enforce will be imposed directly.

Imposition of symmetry is the first step in the construction of zero topological charge
solutions, leading to the second step of selecting the requisite boundary conditions to achieve
this aim. In this section, we impose the symmetries on the energy density functional (1)
whose second order equations will be integrated numerically in Section 5, deferring the task
of imposing symmetries on the topological charge densities (9) and their currents (10) to
the next section, 4. There, the most important task of selecting the requisite boundary
conditions will be made.

Before stating the Ansätze pertaining to the various symmetries to be imposed on the
scalar field φa describing the model (1), we introduce the coordinates to be employed in
each case. Next to spherical symmetry, the strongest symmetry that we will impose is the
axial symmetry, sometimes described also as cylindric symmetry. This involves imposition
of rotational symmetry in a IRD−1 subspace of the full space IRD. The weakest symmetry
is the azimuthal one, which involves imposition of rotational symmetry in a IR2 subspace
of IRD. Then there are all the intermediate symmetries involving imposition of rotational
symmetry in a IRn subspace of IRD, with D − 2 ≥ n ≥ 3. As we restrict to D = 5, the only
relevant values of n are n = 3 and 4. In addition, we will employ multi-azimuthal symmetries,
each one of its constituent azimuthal symmetries being imposed on distinct planes in IRD.
Since we will restrict to D = 6, our attention will be restricted to the bi-azimuthal and
tri-azimuthal cases only. The coordinates are parametrised as follows.
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Axial coordinates:

In this case we label the coordinate on IRD as follows,

xµ = (xi, xD) , i = 1, 2, .., D− 1 , |xi|2 = r2 , R2 = r2 + x2
D , (12)

so that
r = R sin θ1 , xD = R cos θ1 , (13)

where θ1 is the leading polar angle in each dimension, parametrised by the spherical polar
angles (θ1, θ2, ..., θD−3, θD−2, ϕ), ϕ being the azimuthal angle (with 0 ≤ ϕ ≤ 2π, 0 ≤ θi ≤ π)
Our definition of axial symmetry amounts to spherical symmetry in the D − 1 dimensional
subspace, as for example in [12].

Azimuthal coordinates:

Imposing azimuthal symmetry in the xi = (x1, x2) plane, leaves the dependence of the fields
on the coordinates xI = (x3, x4, .., xD) unrestricted. In practice however, we will restrict to
the D = 4 case only for reasons explained in Section 4 below. The labeling we will employ
is

xµ = (xi, xI) , i = 1, 2 , I = 3, 4 , |xi|2 = ρ2 , R2 = ρ2 + |xI |2 , (14)

so that
ρ = R sin θ1 sin θ2 , x3 = R sin θ1 cos θ2 , x4 = R cos θ1 , (15)

or
ρ = r sin θ2 , x3 = z = r cos θ2 , x4 = t . (16)

Intermediate coordinates:

In D = 5 the only intermediate possibility is n = 3, and we label the coordinate as

xµ = (xi, x4, x5) ≡ (xi, s, t) , i = 1, 2, 3 , |xi|2 = r2 , R2 = r2 + s2 + t2 , (17)

so that

r = R sin θ1 sin θ2 , s = R sin θ1 cos θ2xD = R cos θ1 , t = R cos θ1 , (18)

in an angular parametrisation (θ1, θ2, θ3, ϕ), with polar angles ranging from 0 to π, ϕ being
the azimuthal angle ranging from 0 to 2π. The notation

x̂i = (sin θ3 cosϕ, sin θ3 sinϕ, cos θ3) (19)

will be employed below.
In D = 6 both n = 3 and n = 4 are possible, but the second leads to a 4 dimensional

effective system which is superfluous for our purposes here. Hence we restrict to n = 3 and
label the coordinate as

xµ = (xi, x5, x6) ≡ (xi, s, t) , i = 1, 2, 3, 4 , |xi|2 = r2 , R2 = r2 + s2 + t2 , (20)
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so that (r, s, t) are parametrised exactly as in (18) in an angular parametrisation
(θ1, θ2, θ3, θ4, ϕ). The notation

x̂i = (sin θ3 sin θ4 cosϕ, sin θ3 sin θ4 sinϕ, sin θ3 cos θ4, cos θ3) (21)

being employed for this case below.

Bi-azimuthal coordinates:

In this case we will restrict our attention to D = 4 and D = 5. (Bi-azimuthal symmetry
in D = 6 would lead to four dimensional residual subsystems, which are superfluous for
our purposes here.) In the first case we will subject the components of the energy density
functional (3) to the symmetry implied by the Ansatz, while in the second, we will only state
the Ansatz since no solutions will be constructed subsequently in that case.

In D = 4 we impose a second azimuthal symmetry in (14), in the xI = (x3, x4), plane,
denoting the radial variable in the (x, y) and (z, t) planes with ρ =

√

x2 + y2 =
√

|xi|2 and

σ =
√
z2 + t2 =

√

|xI |2. In this case, we will parametrise IR4 as

xi = (R sinψ) x̂i ≡ ρ x̂i , x̂i = (cosϕ1, sinϕ1) (22)

xI = (R cosψ) x̂I ≡ σx̂I , x̂I = (cosϕ2, sinϕ2)

where R2 = |xi|2 + |xI |2 = |xµ|2, with 0 ≤ ψ ≤ π
2
, 0 ≤ ϕ1 ≤ 2π and 0 ≤ ϕ2 ≤ 2π. While the

two angles (ϕ1, ϕ2) are azimuthal angles, the angle θ here is not a polar angle as its range is
one half of that of a polar angle. We shall refer to such angles as semi-polar henceforth.

In D = 5, IR5 is parametrised as

xi = (R sin θ sinψ) x̂i ≡ r x̂i , x̂i = (cosϕ1, sinϕ1) (23)

xI = (R sin θ cosψ) x̂I ≡ s x̂I , x̂I = (cosϕ2, sinϕ2)

x5 = R cos θ ≡ t (24)

where R2 = r2 + s2 + t2, and 0 ≤ θ ≤ π and 0 ≤ ψ ≤ π
2
. In (23)-(24), θ is a polar angle and

ψ a semi-polar angle. We denote polar angles by θ and semi-polar angles by ψ henceforth.
All azimuthal angles are likewise denoted by ϕ.

Tri-azimuthal coordinates:

Here we restrict our attention to D = 6 only for reasons explained already. Extending the
labeling (22) of IR4 to that of IR6, with ρ =

√

x2
1 + x2

2 =
√

|xi1 |2, i1 = 1, 2, σ =
√

x2
3 + x2

4 =
√

|xi2 |2, i2 = 3, 4, and τ =
√

x2
5 + x2

6 =
√

|xi3 |2, i3 = 5, 6, by

xi1 = (R sinψ1 sinψ2) x̂i1 ≡ ρ x̂i1 , x̂i1 = (cosϕ1, sinϕ1)

xi2 = (R sinψ1 cosψ2) x̂i2 ≡ σx̂i2 , x̂i2 = (cosϕ2, sinϕ2) (25)

xi3 = (R cosψ1) x̂i3 ≡ τ x̂i3 , x̂i3 = (cosϕ3, sinϕ3)

where R2 = |xi1 |2 + |xi2|2 + |xi3 |2 = |xµ|2, with 0 ≤ ψ1 ≤ π
2
, 0 ≤ ψ2 ≤ π

2
, and with the three

azimuthal angles 0 ≤ ϕ1 ≤ 2π, 0 ≤ ϕ2 ≤ 2π and 0 ≤ ϕ3 ≤ 2π.
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3.1 Spherical symmetry

The spherically symmetric Ansatz for the scalar field φa in D dimensions is

φa = η Q(R) x̂a , x̂a =
xa

R
, (26)

resulting in the reduced building blocks (3)

∣

∣φaµ
∣

∣

2
= Q2

R + (D − 1)

(

Q

R

)2

∣

∣φabµν
∣

∣

2
= 2(D − 1)

(

Q

R

)2
[

2Q2
R + (D − 2)

(

Q

R

)2
]

(27)

∣

∣φabcµνρ
∣

∣

2
= 6(D − 1)(D − 2)

(

Q

R

)4
[

3Q2
R + (D − 3)

(

Q

R

)2
]

where we have used the notation QR = ∂Q
∂R

.

3.2 Axial symmetry

The axially symmetric Ansatz for the scalar field φa = (φα, φD) in D ≥ 4 dimensions, with
the index α = 1, 2, .., D− 1 is

φα = η H(r, xD) x̂α , φD = η G(r, xD) , x̂α =
xα

r
, (28)

using the labeling (12) of the coordinates.
There is a very important exception in the D = 3 case of (28), where imposition of

axial symmetry on the field φa = (φA, φ3), A = 1, 2, is tantamount to imposing azimuthal
symmetry. The axially symmetric Ansatz in D = 3 is

φA = η H(r, x3)n
A , φ3 = η G(r, x3) , nA =

[

cosnϕ
sin nϕ

]

, (29)

n = 1, 2, 3, ... being the azimuthal vortex number.
The result of substituting (12) in (3) is

∣

∣φaµ
∣

∣

2
=

(

H2
r +G2

r +H2
D +G2

D

)

+ (D − 2)

(

H

r

)2

, (30)

1

2

∣

∣φabµν
∣

∣

2
= 2(H[rGD])

2 + (D − 2)

(

H

r

)2
[

2
(

H2
r +G2

r +H2
D +G2

D

)

+ (D − 3)

(

H

r

)2
]

,

1

6

∣

∣φabcµνρ
∣

∣

2
= (D − 2)

(

H

r

)2
{

6(H[rGD])
2 +

+(D − 3)

(

H

r

)2
[

3
(

H2
r +G2

r +H2
D +G2

D

)

+ (D − 4)

(

H

r

)2
] }

,
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where we have used the notation Hr = ∂H
∂r

, HD = ∂H
∂xD

, and H[rGD] = (HrGD −HDGr).
The spherically symmetric limit (27) of (31) follows immediately from (13), by the re-

placements
H(r, xD) = Q(R) sin θD−2 , G(r, xD) = Q(R) cos θD−2 ,

with R2 = r2 + x2
D, and using

∂r = sin θD−2 ∂R +
cos θD−2

R
∂θD−2

, ∂D = cos θD−2 ∂R − sin θD−2

R
∂θD−2

.

3.3 Azimuthal symmetry

This subsection is concerned with the imposition of azimuthal symmetry in a D dimensional
system, resulting in a D − 1 dimensional residual subsystem. As such, it does not lead to
a boundary value problem which can be tackled numerically in a practical way. It should
thus be viewed as a first step towards the imposition of bi-azimuthal symmetry in the
D = 2 + 2 = 4 case presented in the next subsection.

Imposing azimuthal symmetry in the xi = (x1, x2) subspace (plane) of xµ = (xi, xI),
I = 3, 4, ..., D, and labeling the scalar field as φa = (φA, φA

′

), A = 1, 2 and A′ = 3, 4, ..., D,
the components φA are restricted by the Ansatz

φA = χD−1(xI , ρ) = h(ρ, xI)n
A , nA = (cosnϕ, sin nϕ) , ρ2 = |xi|2 = x2 + y2 , (31)

while theD−2 components φA
′

= φA
′

(ρ, xI) retain their dependence on theD−2 coordinates
xI .

The result of enforcing the Ansatz (31) is most compactly expressed by employing the
coordinate xM = (xI , ρ), and by labeling the residual field as χα = (χA

′

, χD−1) ≡ (φA
′

, h),
with the new index running over α = A′, D − 1. In this notation we have

∣

∣φaµ
∣

∣

2
=

(

nχD−1

ρ

)2

+ |∂Mχα|2

1

2

∣

∣φabµν
∣

∣

2
= 4

(

nχD−1

ρ

)2

|∂Mχα|2 + |∂[Mχ
α∂N ]χ

β|2 (32)

1

6

∣

∣φabcµνρ
∣

∣

2
=

5

2

(

nχD−1

ρ

)2

|∂Mχα|2 + |∂[Mχ
α∂N ]χ

β|2 +
1

6
|∂[Mχ

α∂Nχ
β∂R]χ

γ |2

In the case of interest here, namely for D = 4, xµ = (xi, xI), with i = 1, 2 = x, y and
I = 3, 4 = z, t, the azimuthally symmetric Ansatz (31) now becomes

φA = χ3(xI , ρ) = h(ρ, z, t)nA , φA
′

= χA
′

(xI , ρ) =

[

f(ρ, z, t)
g(ρ, z, t)

]

, (33)

resulting in the residual 3 dimensional system with coordinates xM = (z, t, ρ) being given by
(32) with χD−1 = χ3 ≡ h.

9



The axially symmetric limit (31) of (32) follows immediately from (15), by the replace-
ments

h(z, t, ρ) = H(r, t) sin θ1 , f(z, t, ρ) = H(r, t) cos θ1 , g(z, t, ρ) = G(r, t) ,

with r2 = ρ2 + z2, and using

∂ρ = sin θ1 ∂r +
cos θ1
r

∂θ1 , ∂z = cos θ1 ∂r −
sin θ1
r

∂θ1 .

3.4 Intermediate symmetries

The symmetries to be considered here are rotational symmetry in the IR3 subspace of IR5 (for
D = 5), and the IR4 subspace of IR6 (for D = 6). (Rotational symmetry in the IR3 subspace
of IR6 would be superfluous since that would lead to a four dimensional effective system.)

For D = 5, the intermediate symmetric Ansatz for the field φa = (φα, φ4, φ5) is

φα = η h(r, s, t) x̂α , φ4 = η g(r, s, t) , φ5 = η f(r, s, t) (34)

using the notaion of (17)-(19).
The intermediate symmetric Ansatz for the field φa = (φα, φ5, φ6) for D = 6 is

φα = η h(r, s, t) x̂α , φ5 = η g(r, s, t) , φ6 = η f(r, s, t) (35)

which looks formally identical to (34), but now the coordinates being read from (20)-(21).
In both cases the system reduces to a three dimensional effective subsystems, for which

numerical constructions are outside the scope of this work. Hence we do not present the
result of symmetry imposition on the energy density functionals (3).

3.5 Bi-azimuthal symmetry

Our considerations in this subsection cover two cases, namely to state the bi-azimuthal
Ansätze in D = 4 and D = 5. The residual subsystem in each case is two dimensional and
three dimensional, respectively. In the first case we will construct the solutions numerically,
so the Ansatz will be imposed on the energy density functional, while in the second we will
limit ourselves to stating the Ansatz.

Bi-azimuthal symmetry in D = 4 :
In theD = 4 case, using the notation (22) for the coordinates and using the same notation

(31) as in subsection 3.3, φa = (φA, φA
′

), the bi-azimuthally symmetric Ansatz is

φA = η h(ρ, σ)nA1 , nA1 = (cosn1ϕ1, sinn1ϕ1) , (36)

φA
′

= η g(ρ, σ)nA
′

2 , nA
′

2 = (cosn2ϕ2, sinn2ϕ2) ,

where n1 and n2 are the respective vorticities in the two planes.
In fact the Ansatz (36) results in the first stage from the imposition of azimuthal symme-

try (31) in D = 4, with the residual fields χα = (φA
′

, h), and then imposing a second stage
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of azimuthal symmetry on the triplet χα. Concerning the imposition of the second stage of
azimuthal symmetry, we point out that the densities (32) resulting from the first stage do not
exhibit a global SO(D−1) invariance, although the original densities (3) are invariant under
a global SO(D) 2. We have verified that the second stage results a consistent reduction, even
though the reduced system after the first stage did not possess a global invariance.

Imposition of bi-azimuthal symmetry enables a 2 dimensional boundary value problem,
to be tackled numerically in the next section, so we list the resulting densities (3)

∣

∣φaµ
∣

∣

2
=

[

(

n1h

ρ

)2

+
(n2g

σ

)2
]

+
(

h2
ρ + g2

ρ + h2
σ + g2

σ

)

1

2!2

∣

∣φabµν
∣

∣

2
=

(

n1h

ρ

)2
(n2g

σ

)2

+

[

(

n1h

ρ

)2

+
(n2g

σ

)2
]

(

h2
ρ + g2

ρ + h2
σ + g2

σ

)

+
(

h[ρ gσ]

)2
(37)

1

3!2
∣

∣φabcµνρ
∣

∣

2
=

(

n1h

ρ

)2
(n2g

σ

)2
(

h2
ρ + g2

ρ + h2
σ + g2

σ

)

+

[

(

n1h

ρ

)2

+
(n2g

σ

)2
]

(

h[ρ gσ]

)2

where we have used the notation hρ = ∂h
∂ρ

, Hσ = ∂h
∂σ

, and g[ρ gσ] = (hρgσ − gρhσ) as in (31).

In terms of the coordinates ρ = R sin θ, σ = R cos θ defined by (22), the spherically
symmetric limit (31) of (37) follows immediately from by the replacements

h(ρ, σ) = Q(R) sin θ , g(ρ, σ) = Q(R) cos θ ,

and using

∂ρ = sin θ ∂R +
cos θ

R
∂θ , ∂σ = cos θ ∂R − sin θ

R
∂θ .

This limit will be exploited in the numerical constructions.

Bi-azimuthal symmetry in D = 5 :
Here, the residual system being three dimensional, we simply state the Ansatz

φA = η h(r, s, t)nA1 , nA1 = (cosn1ϕ1, sinn1ϕ1) , (38)

φA
′

= η g(r, s, t)nA
′

2 , nA
′

2 = (cosn2ϕ2, sinn2ϕ2) , (39)

φ5 = η f(r, s, t) , (40)

in the notation of (23)-(24).

3.6 Tri-azimuthal symmetry

As noted at the start of this section, we shall simply state the Ansatz here, for 6 dimensions
only, without imposing the symmetry on the energy density building blocks (3). Then in the
next section we will use this to calculate the topological charge of the putative solutions in

2This is in contrast to that of a YM system, where the local gauge group does, under azimuthal symmetry
imposition, reduce to an effective YM-Higgs system exhibiting a broken local gauge invariance [10].
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6 dimensions, which are not constructed numerically here. The tri-azimuthally symmetric
Ansatz for φa = (φA1, φA2, φA3), A1 = 1, 2, A2 = 13, 4, A3 = 5, 6

φA1 = h(ρ, σ, τ)nA1

1 , nA1

1 = (cosn1ϕ1, sinn1ϕ1)

φA2 = g(ρ, σ, τ)nA2

2 , nA2

2 = (cosn2ϕ2, sinn2ϕ2) (41)

φA3 = f(ρ, σ, τ)nA3

2 , nA3

2 = (cosn3ϕ2, sinn3ϕ2)

where n1, n2 and n3 are the respective vorticities in the three planes (x1, x2), (x3, x4) and
(x5, x6).

4 Topological charges and boundary values

In this Section, we present in detail the topological charges resulting from the various types
of boundary values of the scalar field. This is relevant when subjecting the fields to axial,
azimuthal intermediate bi-azimuthal and tri-azimuthal symmetries in turn. Under each
(symmetry) heading, we will calculate the topological charges in all dimensions D for which
the residual subsystem is at most three dimensional. This will cover the generic cases,
all further examples being superfluous. Subject to axial symmetry, we consider the cases
D = 3, 4, 5, 6. Subject to azimuthal symmetry, we cover only D = 4. Subject to intermediate
symmetry, we take the cases D = 5, 6. For configurations with bi-azimuthal symmetry, we
cover D = 4, 5. Subject to tri-azimuthal symmetry, we cover the only possible case D = 6.

As explained at the end of Section 2, it is sufficient to calculate the winding numbers
since the topological charges are simply numerical multiples of the latter. Up to angular
volume normalisations ND, these are the surface integrals of the currents (10), hence what

we need to calculate are the asymptotic values of the quantities x̂µ ω
(D)
µ to enable us to

evaluate the surface integrals

ID =

∫

x̂µ ω
(D)
µ

∣

∣

∣

∣

R=∞

RD−1 dΩ(θD−2, θD−3, ..., θ1, ϕ) , (42)

x̂µ being the unit vector, and dΩ(θD−2, θD−3, ..., θ1, ϕ) the angular volume element, in IRD.
Here, we will evaluate the angular integrals (42), (a) subject to axial symmetry for

D = 3, 4, 5, 6, (b) subject to azimuthal symmetry for D = 4, and (c) subject to bi-azimuthal
symmetry for D = 4.

4.1 Axial symmetry

In the case of axially symmetric fields, we will impose the following asymptotic boundary
values on the functions H(r, xD) and G(r, xD) defined in (28) for D ≥ 4, and in (29) for
D = 3

lim
R→∞

H(r, xD) = sinmθ1 (43)

lim
R→∞

G(r, xD) = cosmθ1 , m = 1, 2, 3, ...

12



The topological charges of the axially symmetric models in D = 3, 4, 5 are given by the
(volume) integrals

qD = D! ΩD−1

∫

HD−2 (GRHθ1 −HRGθ1) dRdθ1 ,= ID

ΩD−1 = 2π, 2π2, 8π2

3
, being the angular volumes in each of these dimensions, respectively.

The surface integrals (42) can be evaluated analytically. In the axially symmetric cases at
hand, where the corresponding volume integrals are two dimensional, these become contour
integrals in the positive half plane r[0,∞), xD(−∞,+∞) by virtue of Stokes’ theorem.
Now the line integral along the xD axis does not contribute since analiticity requires that
H(θ1 = 0) = H(θ1 = π) = 0, so the only contribution comes from the infinite semicircle,
thus reducing (42) to the following one dimensional angular integrals

Iaxial
D = D! ΩD

∫

HD−2 (GHθ1 −H Gθ1)
∣

∣

R=∞
dθ1 , (44)

with the exception of the D = 3 case where axial symmetry coincides with azimuthal sym-
metry, when

I3 = 2! 2π n

∫

H (GHθ −H Gθ)
∣

∣

R=∞
dθ . (45)

Subject to the axially symmetric boundary values (43), the integrals (45) and (44) for D = 3
and D = 4, 5, 6 are evaluated as

Iax
3 = 4 η3 π n [1 − (−1)m] (46)

Iax
4 = 12 η4 π2m (47)

Iax
5 = 32 η5 π2 [1 − (−1)m] (48)

Iax
6 = 5! η6 π3m. (49)

We now see from (46) and (48), that in odd D dimensions axially symmetric fields
are capable of supporting zero topological charge solutions describing an even number m of
soliton–antisoliton energy/charge concentrations on the xD axis, as well as unit topological

charge solutions describing chains [9] of odd number m of such nodes on the symmetry axis 3.
We see by contrast from (47) and (49), that in even D dimensions axially symmetric fields are
not capable of supporting zero topological charge solutions. They describe only multisoliton
solutions of topological charges m, the concentrations of charge/energy being located on
the xD axis. (These are the analogues of Witten’s axially symmetric instantons [12].) Our
numerical solutions in the next Section will bear out these conclusions.

Having described candidates for zero topological charge solutions in odd dimensions, we
proceed to explore prescriptions whereby such solutions in even D dimensions can also be
constructed. This is possible only if less stringent symmetry than axial symmetry is imposed
on the system, and below we describe two such distinct prescriptions in D = 4, employing in
turn azimuthal and bi-azimuthal symmetries, and one such prescription in D = 6 employing
tri-azimuthal symmetry.

3subsequent to the construction of zro charge monopole–antimonopole pairs [?, 8], such charge chains of
monopoles and antimonopoles of unit topological charge were contructed in [9].
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4.2 Azimuthal symmetry

In the case of azimuthal symmetry in D = 4, the asymptotic boundary values to be imposed
on the functions h(ρ, z, t), f(ρ, z, t) and g(ρ, z, t) defined in (33) are

lim
R→∞

h(ρ, z, t) = sinm1θ1 sinm2θ2

lim
R→∞

f(ρ, z, t) = sinm1θ1 cosm2θ2 (50)

lim
R→∞

g(ρ, z, t) = cosm1θ1 , m1, m2 = 1, 2, 3, ...

We note here that the asymptotic axially symmetric boundary values are described by
one integer m for D ≥ 4 and two integers (m,n) for D = 3, while those for the azimuthal
boundary values for D = 4 are given in terms of the triple of integers (m1, m2, n).

Substituting azimuthal Ansatz (31) in (42) for D = 4, and using the analyticity re-
quirement that h(r, t) vanishes on the t–axis, this reduces to the two dimensional angular
integral

Iaz
4 = 4!n

∫

h [h (fθ2gθ1 − fθ1gθ2) + f (gθ2hθ1 − hθ1hθ2) + g (hθ2fθ1 − gθ1fθ2)] dθ1 dθ2 , (51)

which can readily be evaluated subject to the boundary conditions (50) to yield

Iazim
4 = 12 η4 π2m1 n [1 − (−1)m2 ] . (52)

This accommodates both multi-soliton (for odd m2) and zero topological charge (for even

m2) solutions, labeled by the triple of integers (m1, m2, n). Unfortunately the numerical
solution the corresponding field equations involves three dimensional integration, which task
is beyond the scope of the present work.

4.3 Intermediate symmetries

In both theD = 5 andD = 6 cases discussed in section 3.4 above, the asymptotic behaviours
consistent with finite energy are both stated formally as

lim
R→∞

h(r, s, t) = sinm1θ1 sinm2θ2

lim
R→∞

g(r, s, t) = sinm1θ1 cosm2θ2 (53)

lim
R→∞

f(r, s, t) = cosm1θ1 , m1, m2 = 1, 2, 3, ...

augmented by the analyticity condition h(r = 0) = 0, which is crucial in the evaluation of
the surface intergals. In both the D = 5 and D = 6 here, these follow from three dimensional
volume integrals which are formally identical. Up to numerical factors, these are expressed
as

I int
5,6 ∼ η5,6 (π)2,3m1m2

∫

εµνρ ε
ABC ∂µΞ

A ∂νΞ
B ∂ρΞ

C dr ds dt

= η5,6(π)2,3m1m2

∫

εµνρε
ABC ΞA ∂νΞ

B ∂ρΞ
C dSµ , (54)
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where we have used the notation xµ = (r, s, t), and, the triplet function ΞA, A = 1, 2, 3 in
the two cases is defined in terms of the functions (h, g, f) as

ΞA =
(

(h)3, g, f
)

and ΞA =
(

(h)4, g, f
)

,

respectively. The nonvanishing contributions to the surface integral(s) (54) come from the
upper hemisphere.

The values of the respective surface integrals in D = 5, 6 are calculated to be

I inter
5 =

5 · 26

32
η5 π2m2 [1 − (−1)m1 ] (55)

I inter
6 = 15 η6 π3m1 [1 − (−1)m2 ] , (56)

thus, by relaxing axial symmetry and imposing a weaker symmetry, it is possible to support
both multisolitons of arbitrary topological charges, and, soliton–antisolitons chains, with zero

and nonzero topological charges in all dimensions. Unfortunately the simplest such examples
result in three dimensional boundary value problems, which is at present technically too hard
a task to perform. The situation is the same in the azimuthal case in D = 4 above.

4.4 Bi-azimuthal symmetry

Bi-azimuthal symmetry will be applied in D = 4 and D = 5, each resulting in a two and a
three dimensional subsystems, respectively.

D = 4 = 2 + 2
In this case the fields are described by the bi-azimuthal Ansatz (36). The asymptotic

behaviours of the functions h and g in (36) are taken to be

lim
R→∞

h = sinmψ , lim
R→∞

g = cosmψ . (57)

The topological charge in this case is

Ibi−azim
4 = η4 3! (2π)2 n1 n2

∫

εµν ε
AB ∂µΞ

A ∂νΞ
B dρ dσ

= η4 3! (2π)2 n1 n2

∫

(

εAB ΞA ∂µΞ
B
)

dsµ (58)

where we have used the notation xµ = (ρ, σ), and ΞA = ((h)2, (g)2).
Using the analyticity conditions h(ψ = 0) = 0 and g(ψ = π

2
) = 0 leads to the vanishing

of the line integrals on the ρ and the σ axes, the non vanishing contribution coming from
the infinite quarter circle contour, readily evaluated to yield

Ibi−azim
4 = η4 2 π2 n1n2 [1 − (−1)m] , (59)

which supports both multisolitons and zero charge soliton-antisolitons.
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D = 5 = 2 + 2 + 1
In this case the fields are described by the bi-azimuthal Ansatz (39). The asymptotic

behaviours of the functions h and g and f in (39) are taken to be

lim
R→∞

h = sinm1θ sinm2ψ , lim
R→∞

g = sinm1θ cosm2ψ , lim
R→∞

f = cosm1θ . (60)

The topological charge now reduces to a three dimensional integral in the residual coordinates
xµ = (r, s, t)

Ibi−azim
5 = η5 5 (2π)2 n1 n2

∫

εµνρ ε
ABC ∂µΞ

A ∂νΞ
B ∂ρΞ

C dr ds dt

= η5 5 (2π)2 n1 n2

∫

εµνρε
ABC ΞA ∂νΞ

B ∂ρΞ
C dSµ , (61)

in which the triplet function ΞA, A = 1, 2, 3 is defined as

ΞA = ((h)2, (g)2, f) .

The surface integral (61) is then performed to yield

Ibi−azim
5 = η5 4!n1 n2 [1 − (−1)m1 ] , (62)

describing both multisolitons and soliton antisolitons.

4.5 Tri-azimuthal symmetry

This pertains to D = 6 only. The asymptotic behaviours of the functions h, g and f in the
Ansatz (41) are taken to be

lim
R→∞

h = sinm1ψ1 sinm2ψ2

lim
R→∞

g = sinm1ψ1 cosm2ψ2 (63)

lim
R→∞

f = cosm1ψ1 .

The topological charge integral in this case is

Itri−azim
6 = η6 90 (2π)3 n1 n2 n3

∫

εµνρ ε
ABC ∂µΞ

A ∂νΞ
B ∂ρΞ

C dρ dσ dτ

= η6 90 (2π)3 n1 n2 n3

∫

εµνρε
ABC ΞA ∂νΞ

B ∂ρΞ
C dSµ , (64)

where we have used the notation xµ = (ρ, σ, τ), and ΞA = ((h)2, (g)2, (f)2).
To evaluate the surface integral (64) we need analytic information which comes from

finite energy conditions. While we are not displaying here the energy density functional in
terms of the functions (h, g, f), it is nontheless easy to deduce that h(ψ1 = 0, ψ2 = 0) = 0.
g(ψ1 = 0, ψ2 = π

2
and f(ψ1 = π

2
) = 0) = 0. These, together with continuity conditions, imply
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that the flux (64) out of the three quarter planes (ρ, σ) , (σ, τ) and (τ, ρ) vanishes, and hence
the only contribution comes from the surface bounding the octant of the two–sphere with
radius R =

√

ρ2 + σ2 + τ 2.
Applying the boundary functions (63) on the asymptotic octant the flux (64) yields

Itri−azim
6 =

5! π3

2
n1 n2 n3

(

1

2
[1 − (−1)m1 ]

)4 (

1

2
[1 − (−1)m2 ]

)2

, (65)

analogous to (59), like which the topological charge vanishes when either m1 or m2 is even,
and otherwise it is given by the product of the vortex numbers pertaining to each of the
azimuthal symmetries imposed.

5 Numerical constructions

In this Section we give numerical evidence for the existence spherically symmetric, and
axially symmetric solutions in D = 4, 5. In addition we have constructed solutions with
bi-azimuthal symmetry in D = 4. The solutions of the corresponding D = 3 model were
presented in [11] to which we refer for the latter.

Of course, the most interesting solutions from the viewpoint of understanding zero topo-
logical charge, are the axially symmetric ones, but the spherically symmetric ones are also
presented mainly because the equations of motion in that case allow a thorough asymptotic
analysis underpinning the numerical work. Also the spherically symmetric solutions present
useful starting profiles for the D = 4 bi-azimuthally symmetic multi-solitons.

Technically, we have restricted ourselves to two dimensional numerical integration, solu-
tions with azimuthal symmetry in D ≥ 4 representing a difficult numerical challenge which
we leave for future work. Also, one should notice that only one coupling constant λi is
relevant here. For example, one may factorize λ1 and, by using a suitable rescaling, one may
set λ2 = 1 or λ3 = 1 without any loss of generality.

To simplify the picture, in this section we shall note θD−2 = θ and xD = z. Also, for
all configurations, the total mass/energy M (which equals the total action) is computed by
integrating the corresponding reduced energy functionals.

5.1 Spherically symmetric solutions

Considering the ansatz (26), the reduced one dimensional energy functional reads

E = RD−1E = RD−1

(

λ1(Q
2 − 1)4

(

Q′2 + (D − 1)
Q2

R2

)

+ 2(D − 2)λ2(Q
2 − 1)2Q

2

R2
(66)

×
(

2Q′2 + (D − 2)
Q2

R2

)

+ 6λ3(D − 1)(D − 2)
Q4

R4

(

3Q′2 + (D − 3)
Q2

R2

) )
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Figure 1: The scalar function Q and energy density E of two typical D = 4 and D = 5 spherically

symmetric solutions with λ1 = 1 are shown as a function of the compactified radial coordinate

R/(1 + R).

which leads to the following differential equation

[

2RD−1Q′
(

λ1(Q
2 − 1)4 + 4λ2(D − 2)(Q2 − 1)2Q2

R2 + 18λ3(D − 1)(D − 2)Q
4

R4

)

]′

= RD−2(2λ1(Q
2 − 1)3(4Q′2 + 5(D − 1)Q

2

R2 − (D−1)
R2 + 4λ2

(D−1)
R2 Q(Q2 − 1)

+36λ3
(D−1)(D−2)

R4 Q3(2Q′2 + (D − 3)Q
2

R2 ).

The solutions of this equation have been constructed numerically, for a range of the parame-
ters λi. We follow the usual approach and, by using a standard ordinary differential equation
solver, we evaluate the initial condition

Q(R) = bR− 2b3λ1

3(λ1 + 12b2(λ2 + 9b2λ3))
R3 +O(R5), for D = 4, (67)

Q(R) = bR− 2(b3λ1 + 4b5λ2 − 2)

7(λ1 + 16b2λ2 + 216b4λ3)
R3 +O(R5), for D = 5 (68)

at R = 10−6 for global tolerance 10−14, adjusting for the shooting parameter b and integrating
towards R→ ∞. The behaviour of finite energy solutions for large values of R is
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Figure 2: A three-dimensional plot of the reduced action density E(R, θ) of a D = 5, m = 2

axially symmetric solution with λ1 = λ2 = 1, λ3 = 75.

Q(R) = 1 + ce−
2

3

√
λ2/λ3r − 9λ3

4λ2

1

r2
− 243λ2

3

16λ2
2

1

r4
+O(1/r6), for D = 4, (69)

Q(R) = 1 + ce−
2

3

√
λ2/λ3r − 9λ3

2λ2

1

r2
+

81λ2
3

2λ2
2

1

r4
+O(1/r6), for D = 5, (70)

where c is a free parameter (the corresponding expressions for the D = 3 model are given
in [11]). For all cases considered, solutions with the correct asymptotics are found when the
first derivative of the scalar function Q(R) evaluated at the origin, Q′(0) = b, takes on a
certain value, which is a function of λi.

The profiles of typical D = 4, 5 solutions are presented in Figure 1 for λ1 = λ2 = λ3 = 1.
The energy functional, as given by (66) is also exhibited (one should notice the different
lenght scales of the D = 4 and D = 5 solitons). Similar to the D = 3 case, no multinode
radial solutions were found, although we have no analytical argument for their absence.

5.2 Axially symmetric solutions

Scalar solitons with axial symmetry are found by taking m ≥ 2 in the boundary conditions
at infinity (43). The two-dimensional energy functional E(R, θ) and the set of two coupled
non-linear elliptic partial differential equations satisfied by the functions H(R, θ), G(R, θ)
can easily be derived by using the reduced building blocks (31 and we shall not present them
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here. These equations are solved numerically, subject to the boundary conditions

H|R=0 = 0 , ∂RG|R=0 = 0. (71)

at the origin and (43) at infinity4 (we have restricted our analysis to m = 2 solutions; the
m = 1 case corresponds to spherically symmetric configurations). Considering solutions with
parity reflection symmetry, the equations are integrated in the 0 ≤ θ ≤ π/2 region. The
boundary conditions satisfied at the limits of the θ-interval are

H|θ=0 = ∂θG|θ=0 = 0, ∂θH|θ=π/2 = G|θ=π/2 = 0. (72)

The absence of suitable starting profiles makes this problem extremely difficult. The numer-
ical calculations were performed with the software package CADSOL/FIDISOL, based on
the Newton-Raphson method [17].

Figure 3: The modulus of the scalar field |ϕ| =
√

H2 + G2 is shown as a function of the coordinates

r and z for a typical D = 4, m = 2 axially symmetric solution.

The numerical error for the functions is estimated to be of the order of 10−2 or lower for
most of the axially symmetric configurations.

Solutions with m = 2 of the corresponding D = 3 model were discussed in [11]. In that
case it was possible to distinguish two individual components (e.g. the modulus of the scalar
field |φ| =

√

φ2
1 + φ2

2 possesses always two distinct zeros on the z axis).

4In the numerical algorithm we have employed a compactified radial coordinate x = R/(1+R), such that
spatial infinity corresponds to x = 1.
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Our D = 4, 5 results indicate that this is a generic feature of all axially symmetric
solutions. In Figure 2 we present a three dimensional plot of the energy functional (the
reduced Lagrangian) E(R, θ) of a typical D = 5, m = 2 axially symmetric solution as a
function of the r, z (here λ = λ2 = 1, λ3 = 75). The modulus of the scalar field |ϕ| =√
H2 +G2 of a D = 4 solution with λ = λ2 = 1, λ3 = 8 is presented in Figure 3. We have

found that |ϕ| possesses always two zeros at ±d/2 on the z−symmetry axis, the positions
of the nodes depending on the value of the coupling constants λi. The total action of these
solutions, as given by the integral of E(R, θ) increases with increasing λi. Interestingly
enough, the reduced Lagrangian density E(R, θ) possesses a saddle point at the origin, the
maxima being localized at z = ±d/2, at a nonzero value of r, r = r0. This feature, already
present in the D = 3 case (see Figure 4 in Ref. [11]) is enhanced for the higher dimensional
configurations.

Although the profiles of the axially symmetric solutions look qualitatively the same for
D = 3, 4, 5, their physical significance is very different. For D = 4 they describe two
distinct solitons sitting at (z = ±d/2, r = r0), while in three and five dimensions the
solutions represent a pair of soliton-antisoliton with zero topological charge.

It would be interesting to construct higher m solutions, describing for an odd dimension
soliton-anti-soliton chains, in analogy with the situation in YMH theory [9].

Figure 4: The profiles of the scalar functions ϕ1 and ϕ2 are shown for a typical D = 4 bi-azimuthally

symmetric solution with n1 = n2 = 2, λ1 = λ2 = λ3 = 1.
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5.3 Solutions with bi-azimuthal symmetry

To obtain D = 4, m = 1 configurations with bi-azimuthal symmetry, we employ the n = 1
spherically symmetric solutions discussed in 5.1 above for starting profiles and increase the
values of n1, n2 slowly. The iterations converge, and repeating the procedure one obtains
in this way solutions for arbitrary n. The physical values of n1, n2 are integers. We have
studied solutions with 1 ≤ n1, n2 ≤ 9. The reduced action density E(R,ψ) can be written
in terms of the reduced building blocks (37). The two scalar functions h(R,ψ) and g(R,ψ)
satisfy the boundary conditions

h|R=0 = g|R=0 = 0 (73)

at the origin, (57) at infinity, and

h|ψ=0 = ∂ψg|ψ=0 = 0, ∂ψh|ψ=π/2 = g|ψ=π/2 = 0. (74)

on the ρ and σ axes. The field equations have been solved by using the same methods
employed in the axially symmetric case but now with much better accuracy, the typical
numerical error being of the order of 10−4 or smaller.

Figure 5: A three-dimensional plot of the effective lagrangean E(ρ, σ) of the D = 4 bi-azimuthally

symmetric solution presented in Figure 4.

As expected, the bi-azimuthally symmetric solutions exhibit a very different picture. A
general feature of all m = 1 solutions with n1 = n2 is that the energy functional E(R,ψ)
possesses one maximum on the ψ = π/4 axis (corresponding to the ρ = σ surface), it
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being possible to distinguish only one individual concentration of the action. In this respect
the bi-azimuthally symmetric multisolitons of this model are qualitatively similar to those
of the models featuring gauge fields, as discussed recently in [10, 19]. In contrast to the
latter however, where only solutions with n1 = n2 were found, here we noticed the existence
finite mass solutions with n1 6= n2. The maximum of the action density moves inward with
increasing n1, n2.

In Figure 4 the profiles scalar functions h and g of the a typical bi-azimuthally symmetric
solution are shown for several angles as a function of the radial coordinate R (with λ1 =
λ2 = λ3 = 1 in this case). A three dimensional plot of the energy density of a typical
m = 1, n1 = n2 = 2 configuration is presented in Figure 5. We have also studied the mass
dependence of the bi-azimuthally symmetric solutions on the coupling constants λi. From
the numerical results, we observed some features of the solutions, without attempting to give
an analytic explanation. The most peculiar of these is the fact that finite mass solutions
persist for a small but finite range of negative λ2 ≤ 0. No such solutions can be justified by
the topological lower bounds. When λ1 or λ2 are varied, the maximum of the mass-energy
density moves inwards with increasing value of the respective coupling constant, while the
opposite behaviour to this is found when λ3 is varied. Yet another property of multi-solitons
is observed. It turns out that the mass of a solution M(n1, n2), whose topological lower
bound given by (59) to be 4π2 n1n2, is quantitatively quite close to n1n2M(1, 1). This means
that the deviation of the value of M(n1, n2) from its lower bound value is proportionate to
the deviation of the value of M(1, 1) from its respective lower bound value, implying that
composite solitons have rather low binding energies. On the other hand, in all cases studied,
it turns out that M(n1, n2) > n1n2M(1, 1), albeit by a small amount quantitatively. This
in turn suggests that the composite states are unstable against decay into the lowest mass
constituents.

Yet another surprising but not counterintuitive property observed is, that while multi-
solitons of masses M(n1, n2) exhibit one single peak of the energy density for small values
of |n1 − n2|, when |n1 − n2| becomes large the energy density develops two separated peaks.

More complicated bi-azimuthal solutions with m ≥ 2 are likely to exist. These con-
figurations would describe composite bound states, rather analogous to the monopole-
antimonopole chains of the Yang-Mills-Higgs model [9]. Our preliminary numerical results
already indicate the existence of zero topological charge m = 2 configurations with bi-
azimuthal symmetry in D = 4, with n1 = n2 = 2. We found that there were no m = 2
solutions with n1 = n2 = 1, just as for the pure YM model whose instanton-antiinstanton
solutions constructed in [10]. Again as in [10], the energy density exhibits two distinct max-
ima on the ψ = π/4 axis. In the absence of suitable starting profiles however, the numerical
accuracy of these solutions turned out to be much lower in this case.

A systematic discussion of these solutions, together with a generalisation to higher di-
mensions will be presented elsewhere.
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6 Summary and Conclusions

The overriding aim of this work is to examine the conditions that enable the construction of
zero topological charge solutions in classical field theories, which otherwise support topolog-
ically stable (multi-)soliton solutions with nonvanishing topological charge. We have shown
that the conditions in question are those of (a) subjecting the system to the requisite sym-
metry, which in practice is what is done anyway when constructing (multi-)solitons, and (b)
by requiring special types of boundary conditions that differ essentially from those employed
for (multi-)solitons.

Our symmetry analysis covers dimensions D = 3, 4, 5, 6, namely both odd and even
examples in 6 ≥ D ≥ 3, while the solutions constructed numerically to underpin our findings
are limited to D ≤ 5. The reason for this restriction is that boundary value problems in more
than two dimensions is beyond the scope of the present work. The case D = 2 is irrelevant,
being too small to accommodate requirements (a) and (b). The case D = 3, while it is the
first nontrivial example, is rather special since in that case axial and azimuthal symmetries
coincide. We have chosen to carry out this investigation in the framework of the simplest
possible field theoretic model, irrespective of its applicability to physical problems. This
is a symmetry breaking Goldstone type model in D Euclidean dimensions, whose energy
density functional depends on a D component scalar field φa, a = 1, 2, . . . , D. This choice is
motivated by the fact that the topological charges in such models are the simplest available
examples, being up to constant multiples the winding numbers of φa in IRD. It should
be emphasised however that our conclusions hold in the other classical field theories that
support solitons in these dimensions, namely the sigma models and the non Abelian gauge
field systems (including Higgs fields).

Our conclusions can be summarised as follows:

• The field φa asymptotically tends to a unit vector φ̂a, which depends exclusively on an-
gular variables, the radial variable being infinite. Precisely what these angular variables
are depends on the symmetry imposed. To analyse qualitatively distinct possibilities,
we have found it sufficient to impose symmetries that result in residual subsystems
of no more than three dimensions. It is superfluous to consider weaker symmetries
resulting in four or higher number of effective degrees of freedom, since these do not
result in qualitatively new features as far as the existence of multisolitons, and soliton–
antisoliton chains is concerned.

• There are two types of symmetries employed. First, spherical (rotational) symmetry
in a N dimensional subspace of IRD. For N = D − 1, this is axial symmetry resulting
in two effective degrees of freedom. At the other extreme, N = 2, this is azimuthal

symmetry resulting in an effective D−2 dimensional subsystem. Accordingly, we have
restricted to D = 3, 4 in the case of azimuthal symmetry. Intermediate values of N
subject to this restriction are, N = 3 in D = 5 and N = 4 in D = 6. We have
described these as intermediate symmetries. Second, we impose multi-azimuthal sym-
metries, composed of azimuthal symmetries in pairs of coordinates. Again, subject to
limiting our considerations to three effective degrees of freedom, these are bi-azimuthal
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symmetry in D = 4, 5, and tri-azimuthal symmetry in D = 6. The residual system
after symmetry imposition depends on the radial coordinate and the remaining angular
coordinates, and the number of unknown functions is the same as the dimensionality
of the residual subsystem. In all cases, the azimuthal angles are all integrated out and
the remaining angular dependence is on polar angles {θi} (0 ≤ θ ≤ π) and semi-polar

angles {ψI} (0 ≤ ψI ≤ π
2
), i and I labeling the residual polar and semi-polar angles,

respectively.

• The asymptotic field φ̂a is parametrised by the residual angular variables {θi} and {ψI}
only. The other angular variables, that include all azimuthal angles, are integrated out.
Consistently with the requirements of finite energy and analyticity, the most general
as φ̂a is encoded by {θi} and {ψI} is via

{mi θi} , {mI ψI} , mi , mI integers . (75)

It is important to stress that the integers (mi , mI) in (75) appear only the in the
asymptotic field φ̂a, and that they do not parametrise the field φa everywhere.
Throughout this text, we have reserved the letter m to these m–numbers. In con-
trast we label the vorticity associated with each azimuthal symmetry, on which the
field φa everywhere depends, by the letters {n}. Thus the n–numbers which count
the winding in each azimuthal plane are on a completely distinct footing as opposed
to the m–numbers which serve only to select the boundary values imposed. All solu-
tions with m = 1 describe topologically stable multisolitons whose topological charges
are encoded with the n–numbers, {n}. The topological charges of soliton–antisoliton
chains with even m are zero, while those of odd m are nonzero, and depend on {n}. In
the special case of axial symmetry in D ≥ 4, when no n–number occurs, the topological
charges in even D are labeled by a m-number.

The numerical constructions in Section 5 underpin the above conclusions. Both
(multi)solitons and soliton–antisoliton solutions have been constructed like for the D = 3
case in [11], whose results are extended to higher dimensions the the present work. Vari-
ous features found there are shared by higher dimensional axially symmetric solutions. In
particular the profiles of the scalar functions have rather similar shapes. The numerical con-
structions in the present work is limited to 2 dimensional boundary value problem involving
2, so that we present only axially symmetric solutions in D = 4, 5 (and D = 3 in [11]), and
bi-azimuthally symmetric solutions in D = 4.

The axially symmetric solutions constructed in both [11] and in section 5.2 here are
limited in their scope to solutions with asymptotic behaviour characterised by m−number
equal to 1 and to 2. In the D = 3 case [11] these are multisolitons with m = 1 and
higher n−numbers, and to soliton–antisoliton pairs with m = 2 and n−number equal to
1. In D = 3, like for the YMH monopoles [18] the energy density of the multisolitons is
concentrated at the origin, and when m = 2 there occur two concentrations distributed
symmetrically on the 3−axis. While we expect that solitons with m ≥ 2 and with n = 1
would describe chains of solitons and antisolitons on the 3−axis, and when n ≥ 3 rings
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would form, like for the monopoles in the YMH model observed in [9], this has not been
carried out in [11]. Here, axially symmetric solutions in D = 4, 5 are constructed in section
5.2. The m = 2 solutions in D = 5 are similar to the m = 2 , n = 1 soliton–antisoliton
solutions in D = 3, i.e. they describe two distinct peaks on the 5−axis of equal and opposite
charges. But there is no n−number in D = 5 so here the analogy with D = 3 stops. The
m = 2 axially symmetric solutions inD = 4 also describe two peaks on the 4−axis, but unlike
those of D = 3, 5 they both peaks have the same topological charge. These are multisolitons,
qualitatively similar to the axially symmetric Witten multiinstantons [12]. This illustrates
that for axially symmetric fields with m−number higher than 1, the peaks are situated on
the (symmetry) D−axis, such that in odd dimensions their charges have alternating signs,
while in even dimensions all the charges have the same sign.

There is one final property of axially symmetric solutions worth remarking on. In gauge
field systems, namely the D = 3 monopole [?] as our only example, the the zero charge m = 2
solutions have a positive binding energy with respect to decay into two charge−1 monopoles.
By contrast, the multisolitons and the soliton–antisoliton solutions of the Goldstone models
have negative binding energies. We have not given quantitative evidence of this in section
5.2 because of insuffient numerical accuracy, but this qualitative trend was observed.

The bi-azimuthally symmetric solutions in D = 4 constructed in section 5.3 have their
analogue in the bi-azimuthal YM instantons given in [10]. Like in that case there is a
n−number associated with each (of the two) azimuthal symmetries, n1 and n2, and the
topological charge is proportional to n1 n2 (see (62)). Unlike in [10] however, where finite
action solutions occur only for one interger n1 = n2 = n, here there are solutions for distinct
n1 6= n2. For m−number equal to 1 with n1 = n2 = n the action density has only one
peak which like in the YM example [10] is not situated at the origin. Rather, it peaks at
a numerically determined distance from the origin on the ψ = π

4
axis, ψ being the unique

semi–polar angle. The situation is different in the (m = 1) n1 6= n2 case. There the action
density breaks up into two distinct peaks on the ψ = π

4
axis, and the centres of these peaks

move away from each other as |n1 − n2| increases. Another point of contrast with the YM
case, where the multiinstantons do form bound states, the corresponding multisolitons here
do not form bound states. For all configurations we have studied, the energy of a the n1, n2

multi–solitons of our model are greater than that of n1n2 1-solitons. Moreover it turns out
that this deficit of binding energy increases with increasing n1, n2. We have also verified
that m = 2 solutions carrying zero topological charge (see (62)) exist, in the n1 = n2 = 2
case, but have not supplied quantitative data here. These present two distinct peaks like in
the YM case [10]. Our numerical results here were not sufficiently accurate to enable us to
estimate wheter the binding energy preventing the decay of this solution into two charge−2
(m = 1) multisolitons is positive or negative. Likewise for the same reason, we did not
increase n1 and n2 to values higher than 3, to see what the analogues of the rings forming
in the D = 3 YM example [8] are. (Such ring like configurations were discovered recently
in the bi-azimuthal gauge field configurations with n = 3 in [19], implying their ucurrence
here.)

This completes the summary of our results. We now make some final, general comments.
We have seen that most of the geometrical and topological properties of the multisoliton
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and soliton–antisoliton solutions in the Goldstone models studied here, are broadly similar
both to the YMH example [8, 9] in D = 3 and to the YM example [10] in D = 4. There are
however some notable differences, firstly that the binding energies of our multisolitons are
negative as opposed to those of their gauge field counterparts [8, 9, 10], which are positive.
Then there is the difference between the D = 4 bi-azimuthal Goldstone solitons, where the
two vorticities (n−numbres) can be different, and theD = 4 YM instantons for which the two
vorticities must be equal. More recently the SU(2) YM-dilaton system in 4 + 1 dimensions
was analysed and the static bi-azimuthally symmetric solutions were studied in [19]. There
too, the numerical results indicated that the two n−numbres had to be equal n1 = n2. It
appears therefore that this restriction (n1 = n2) applies to bi-azimuthally symmetric gauge
fields, but not to Goldstone fields. I is likely this feature may persist in multi-azimuthal
systems too, but since this conclusion is reached only on the basis of numerics, it is beyond
the scope of the present work.

Based on what we have learnt about the general similarities in the different models sup-
porting topologically nontrivial lumps studied here and in [8, 9, 10, 19], we would speculate
that similar analogous properties can be expected for the lump solutions in various sigma
models, e,g. O(D+ 1) models on IRD, or the corresponding Grassmannian sigma models on
IR2N , or indeed their gauged counterparts. One respect in which it would have been more
appropriate to use O(D+ 1) models on IRD instead of Goldstone models, featuring negative
binding energies, is that the O(D+ 1) models would be expected to feature positive binding
energies, based on our knowledge of the O(3+1) model on IR3, namely the celbrated Skyrme
model. Certainly the simple analysis of the topological charges and baoundary conditions
given in section 4 can be extended systematically and without obstacles to the sigma model
counterparts of the scalar Goldstone fields. This was eschewed because the numerical con-
structions for the sigma models, in particular the practical task of imposing the boundary
conditions, are very much harder.

One last comment concerns a common feature of zero topological charge bi-azimuthal
solutions to both gauge field systems, namely those studied in [10, 19], and to the corre-
spoding Goldstone model studied here. These are both solutions with m−number equal to
2. In the former case, the numerical results indicated that the simplest such solution was
that with n−number equal to 2, and not n = 1. Likewise in the case at hand, it turned
out that there existed no solution for n1 = n2 = 1, the simplest solution being characterised
by n1 = 1 , n2 = 2. It is interesting that this observation is consistent with the results
of the numerical analysis of Krusch and Sutcliffe [20] in the context of the zero baryon
charge solutions of the Skyrme model. It is very interesting also that the analytic analysis
of Sadun and Segert SS2, which proves the existence of non–selfdual instantons (e.g. our
m = 3 instantons [10]), their proof exculdes topological charge 1 instantons (e.g. our m = 3
instantons with n = 1 whose topological charge is equal to n2 = 1). This is a rather subtle
but pervasive feature, which we cannot analyse further here.
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