126 research outputs found

    Multiperiodicity in the newly discovered mid-late Be star V2104 Cygni

    Full text link
    We obtained the first long, homogenous time-series of V2104Cyg, consisting of 679 datapoints, with the uvbybeta photometers of Sierra Nevada and San Pedro Martir Observatories with the aim to detect and subsequently interpret the intrinsic frequencies of this previously unstudied variable star, which turned out to be a Be star. We try to figure out its place among the variable B stars on the upper Main Sequence. In order to obtain additional information on physical parameters we collected a few spectra with the ELODIE and FIES instruments. We searched for frequencies in the uvby passbands using 2 different frequency analysis methods and used the S/N>4 criterion to select the significant periodicities. We obtained an estimate of the physical parameters of the underlying B star of spectral type between B5 and B7, by correcting for the presence of a circumstellar disk, using a formalism based on the strenght of the Halpha line emission. We detected 3 independent frequencies with amplitudes below 0.01mag, f1 = 4.7126 c/d, f2 = 2.2342 c/d and f3 = 4.671 c/d, and discovered that V2104Cyg is a Be star. The fast rotation (vsini=290+/-10 km/s, and 27<i<45) hampered the investigation of the associated pulsational parameters l. Nevertheless, the most plausible explanation for the observed variability of this mid-late type Be star is a non-radial pulsation model. This paper is based on observations obtained at the Observatorio Astronomico Nacional San Pedro Martir (Mexico), Observatorio de Sierra Nevada (Spain), Observatoire de Haute Provence (France), and on observations made with the Nordic Optical Telescope, Observatorio Roque de los Muchachos, La Palma, Spain.Comment: 7 pages, 4 figures, A&A accepte

    Lamost observations in the kepler field. I. Database of low-resolution spectra*

    Get PDF
    The nearly continuous light curves with micromagnitude precision provided by the space mission Kepler are revolutionizing our view of pulsating stars. They have revealed a vast sea of low-amplitude pulsation modes that were undetectable from Earth. The long time base of Kepler light curves allows for the accurate determination of the frequencies and amplitudes of pulsation modes needed for in-depth asteroseismic modeling. However, for an asteroseismic study to be successful, the first estimates of stellar parameters need to be known and they cannot be derived from the Kepler photometry itself. The Kepler Input Catalog provides values for the effective temperature, surface gravity, and metallicity, but not always with sufficient accuracy. Moreover, information on the chemical composition and rotation rate is lacking. We are collecting low-resolution spectra for objects in the Kepler field of view with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST, Xinglong observatory, China). All of the requested fields have now been observed at least once. In this paper, we describe those observations and provide a useful database for the whole astronomical communit

    The 2003-4 multisite photometric campaign for the Beta Cephei and eclipsing star 16 (EN) Lacertae with an Appendix on 2 Andromedae, the variable comparison star

    Get PDF
    A multisite photometric campaign for the Beta Cephei and eclipsing variable 16 Lacertae is reported. 749 h of high-quality differential photoelectric Stromgren, Johnson and Geneva time-series photometry were obtained with ten telescopes during 185 nights. After removing the pulsation contribution, an attempt was made to solve the resulting eclipse light curve by means of the computer program EBOP. Although a unique solution was not obtained, the range of solutions could be constrained by comparing computed positions of the secondary component in the Hertzsprung-Russell diagram with evolutionary tracks. For three high-amplitude pulsation modes, the uvy and the Geneva UBG amplitude ratios are derived and compared with the theoretical ones for spherical-harmonic degrees l <= 4. The highest degree, l = 4, is shown to be incompatible with the observations. One mode is found to be radial, one is l = 1, while in the remaining case l = 2 or 3. The present multisite observations are combined with the archival photometry in order to investigate the long-term variation of the amplitudes and phases of the three high-amplitude pulsation modes. The radial mode shows a non-sinusoidal variation on a time-scale of 73 yr. The l = 1 mode is a triplet with unequal frequency spacing, giving rise to two beat-periods, 720.7 d and 29.1 yr. The amplitude and phase of the l = 2 or 3 mode vary on time-scales of 380.5 d and 43 yr. The light variation of 2 And, one of the comparison stars, is discussed in the Appendix.Comment: 18 pages, 19 figures, accepted for publication in MNRA

    Fundamental Properties of Stars using Asteroseismology from Kepler & CoRoT and Interferometry from the CHARA Array

    Full text link
    We present results of a long-baseline interferometry campaign using the PAVO beam combiner at the CHARA Array to measure the angular sizes of five main-sequence stars, one subgiant and four red giant stars for which solar-like oscillations have been detected by either Kepler or CoRoT. By combining interferometric angular diameters, Hipparcos parallaxes, asteroseismic densities, bolometric fluxes and high-resolution spectroscopy we derive a full set of near model-independent fundamental properties for the sample. We first use these properties to test asteroseismic scaling relations for the frequency of maximum power (nu_max) and the large frequency separation (Delta_nu). We find excellent agreement within the observational uncertainties, and empirically show that simple estimates of asteroseismic radii for main-sequence stars are accurate to <~4%. We furthermore find good agreement of our measured effective temperatures with spectroscopic and photometric estimates with mean deviations for stars between T_eff = 4600-6200 K of -22+/-32 K (with a scatter of 97K) and -58+/-31 K (with a scatter of 93 K), respectively. Finally we present a first comparison with evolutionary models, and find differences between observed and theoretical properties for the metal-rich main-sequence star HD173701. We conclude that the constraints presented in this study will have strong potential for testing stellar model physics, in particular when combined with detailed modelling of individual oscillation frequencies.Comment: 18 pages, 12 figures, 7 tables; accepted for publication in Ap

    HD 181068: A Red Giant in a Triply-Eclipsing Compact Hierarchical Triple System

    Get PDF
    Hierarchical triple systems comprise a close binary and a more distant component. They are important for testing theories of star formation and of stellar evolution in the presence of nearby companions. We obtained 218 days of Kepler photometry of HD 181068 (magnitude of 7.1), supplemented by groundbased spectroscopy and interferometry, which show it to be a hierarchical triple with two types of mutual eclipses. The primary is a red giant that is in a 45-day orbit with a pair of red dwarfs in a close 0.9-day orbit. The red giant shows evidence for tidally-induced oscillations that are driven by the orbital motion of the close pair. HD 181068 is an ideal target for studies of dynamical evolution and testing tidal friction theories in hierarchical triple systems.Comment: 22 pages, including supporting on-line material. This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science Vol. 332 no. 6026 pp. 216-218 (8 April 2011), doi:10.1126/science.1201762. http://www.sciencemag.org/content/332/6026/216.ful

    The first evidence for multiple pulsation axes: a new roAp star in the Kepler field, KIC 10195926

    Get PDF
    We have discovered a new rapidly oscillating Ap star among the Kepler Mission target stars, KIC 10195926. This star shows two pulsation modes with periods that are amongst the longest known for roAp stars at 17.1 min and 18.1 min, indicating that the star is near the terminal age main sequence. The principal pulsation mode is an oblique dipole mode that shows a rotationally split frequency septuplet that provides information on the geometry of the mode. The secondary mode also appears to be a dipole mode with a rotationally split triplet, but we are able to show within the improved oblique pulsator model that these two modes cannot have the same axis of pulsation. This is the first time for any pulsating star that evidence has been found for separate pulsation axes for different modes. The two modes are separated in frequency by 55 microHz, which we model as the large separation. The star is an alpha^2 CVn spotted magnetic variable that shows a complex rotational light variation with a period of Prot = 5.68459 d. For the first time for any spotted magnetic star of the upper main sequence, we find clear evidence of light variation with a period of twice the rotation period; i.e. a subharmonic frequency of νrot/2\nu_{\rm rot}/2. We propose that this and other subharmonics are the first observed manifestation of torsional modes in an roAp star. From high resolution spectra we determine Teff = 7400 K, log g = 3.6 and v sin i = 21 km/s. We have found a magnetic pulsation model with fundamental parameters close to these values that reproduces the rotational variations of the two obliquely pulsating modes with different pulsation axes. The star shows overabundances of the rare earth elements, but these are not as extreme as most other roAp stars. The spectrum is variable with rotation, indicating surface abundance patches.Comment: 17 pages; 16 figures; MNRA

    Multisite spectroscopic seismic study of the beta Cep star V2052 Oph: inhibition of mixing by its magnetic field

    Get PDF
    We used extensive ground-based multisite and archival spectroscopy to derive observational constraints for a seismic modelling of the magnetic beta Cep star V2052 Ophiuchi. The line-profile variability is dominated by a radial mode (f_1=7.14846 d^{-1}) and by rotational modulation (P_rot=3.638833 d). Two non-radial low-amplitude modes (f_2=7.75603 d^{-1} and f_3=6.82308 d^{-1}) are also detected. The four periodicities that we found are the same as the ones discovered from a companion multisite photometric campaign (Handler et al. 2012) and known in the literature. Using the photometric constraints on the degrees l of the pulsation modes, we show that both f_2 and f_3 are prograde modes with (l,m)=(4,2) or (4,3). These results allowed us to deduce ranges for the mass (M \in [8.2,9.6] M_o) and central hydrogen abundance (X_c \in [0.25,0.32]) of V2052 Oph, to identify the radial orders n_1=1, n_2=-3 and n_3=-2, and to derive an equatorial rotation velocity v_eq \in [71,75] km s^{-1}. The model parameters are in full agreement with the effective temperature and surface gravity deduced from spectroscopy. Only models with no or mild core overshooting (alpha_ov \in [0,0.15] local pressure scale heights) can account for the observed properties. Such a low overshooting is opposite to our previous modelling results for the non-magnetic beta Cep star theta Oph having very similar parameters, except for a slower surface rotation rate. We discuss whether this result can be explained by the presence of a magnetic field in V2052 Oph that inhibits mixing in its interior.Comment: 12 pages, 6 figures and 5 tables; accepted for publication in MNRAS on 2012 August 1

    Kepler observations of Am stars

    Get PDF
    We present an analysis of high-resolution spectra for two pulsating Am stars in the Kepler field. The stellar parameters derived in this way are important because parameters derived from narrow-band photometry may be affected by the strong metal lines in these stars. We analyse the Kepler time series of ten known Am stars and find that six of them clearly show δ Scuti pulsations. The other four appear to be non-pulsating. We derive fundamental parameters for all known pulsating Am stars from ground-based observations and also for the Kepler Am stars to investigate the location of the instability strip for pulsating Am stars. We find that there is not much difference between the Am-star instability strip and the δ Scuti instability strip. We find that the observed location of pulsating Am stars in the HR diagram does not agree with the location predicted from diffusion calculation
    corecore