204 research outputs found

    Traditional circumcision during manhood initiation rituals in the Eastern Cape, South Africa: a pre-post intervention evaluation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Circumcisions undertaken in non-clinical settings can have significant risks of serious adverse events, including death. The aim of this study was to test an intervention for safe traditional circumcision in the context of initiation into manhood among the Xhosa, Eastern Cape, South Africa.</p> <p>Methods</p> <p>Traditional surgeons and nurses registered with the health department were trained over five days on ten modules including safe circumcision, infection control, anatomy, post-operative care, detection and early management of complications and sexual health education. Initiates from initiation schools of the trained surgeons and nurses were examined and interviewed on 2<sup>nd</sup>, 4<sup>th</sup>, 7<sup>th </sup>and 14<sup>th </sup>day after circumcision.</p> <p>Results</p> <p>From 192 initiates physically examined at the 14th day after circumcision by a trained clinical nurse high rates of complications were found: 40 (20.8%) had mild delayed wound healing, 31 (16.2%) had a mild wound infection, 22 (10.5%) mild pain and 20 (10.4%) had insufficient skin removed. Most traditional surgeons and nurses wore gloves during operation and care but did not use the recommended circumcision instrument. Only 12% of the initiates were circumcised before their sexual debut and they reported a great deal of sexual risk behaviour.</p> <p>Conclusion</p> <p>Findings show weak support for scaling up traditional male circumcision.</p

    TNF-α promoter polymorphism: a factor contributing to the different immunological and clinical phenotypes in Japanese encephalitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>More than three billion populations are living under the threat of Japanese encephalitis in South East Asian (SEA) countries including India. The pathogenesis of this disease is not clearly understood and is probably attributed to genomic variations in viral strains as well as the host genetic makeup. The present study is to determine the role of polymorphism of TNF-alpha promoter regions at positions -238G/A, -308G/A, -857C/T and -863C/A in the severity of Japanese encephalitis patients.</p> <p>Methods</p> <p>Total of 142 patients including 66 encephalitis case (IgM/RT-PCR positive), 16 fever cases (IgM positive) without encephalitis and 60 apparently healthy individuals (IgG positive) were included in the study. Polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) using site specific restriction enzymes were implemented for polymorphism study of TNF alpha promoter.</p> <p>Results</p> <p>Following the analysis of the digestion patterns of four polymorphic sites of the TNF- alpha promoter region, a significant association was observed between the allele -308A and -863C with the patients of Japanese encephalitis.</p> <p>Conclusions</p> <p>TNF- alpha 308 G/A has been shown to be associated with elevated TNF- alpha transcriptional activity. On the other hand, polymorphism at position -863C/A in the promoter region has been reported to be associated with reduced TNF- alpha promoter activity and lower plasma TNF levels. As per the literature search, this is the first study to identify the role of TNF- alpha promoter in JE infection. Our results show that subjects with - 308A and -863C alleles are more vulnerable to the severe form of JE infection.</p

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Etiological factors in primary hepatic B-cell lymphoma

    Get PDF
    Sixty-four cases of malignant lymphoma involving the liver were examined. Of these, 20 cases were histologically confirmed to be primary hepatic B-cell lymphoma. Twelve of these 20 cases were diffuse large B-cell lymphoma (DLBCL) and eight cases were mucosa-associated lymphoid tissue (MALT) lymphoma. Of the 12 cases of DLBCL, six were immunohistologically positive for CD10 and/or Bcl6 (indicating a germinal center phenotype), six were positive for Bcl2, and five were positive for CD25. Eight of the 12 DLBCL cases (66.7%) and two of the eight MALT lymphoma cases (25%) had serum anti-hepatitis C virus (HCV) antibodies and HCV RNA. The incidence of HCV infection was significantly higher in the hepatic DLBCL cases than in systemic intravascular large B-cell cases with liver involvement (one of 11 cases, 9.1%) and T/NK-cell lymphoma cases (one of 19 cases, 5.3%) (p < 0.01 for both). Two hepatic DLBCL cases (16.7%) had rheumatoid arthritis treated with methotrexate, and four MALT lymphoma cases (50%) had Sjögren’s syndrome, primary biliary cirrhosis, or autoimmune hepatitis; one case in each of these two groups was complicated by chronic HCV-seropositive hepatitis. Although primary hepatic lymphoma is rare, persistent inflammatory processes associated with HCV infection or autoimmune disease may play independent roles in the lymphomagenesis of hepatic B cells

    Superior Immunogenicity of Inactivated Whole Virus H5N1 Influenza Vaccine is Primarily Controlled by Toll-like Receptor Signalling

    Get PDF
    In the case of an influenza pandemic, the current global influenza vaccine production capacity will be unable to meet the demand for billions of vaccine doses. The ongoing threat of an H5N1 pandemic therefore urges the development of highly immunogenic, dose-sparing vaccine formulations. In unprimed individuals, inactivated whole virus (WIV) vaccines are more immunogenic and induce protective antibody responses at a lower antigen dose than other formulations like split virus (SV) or subunit (SU) vaccines. The reason for this discrepancy in immunogenicity is a long-standing enigma. Here, we show that stimulation of Toll-like receptors (TLRs) of the innate immune system, in particular stimulation of TLR7, by H5N1 WIV vaccine is the prime determinant of the greater magnitude and Th1 polarization of the WIV-induced immune response, as compared to SV- or SU-induced responses. This TLR dependency largely explains the relative loss of immunogenicity in SV and SU vaccines. The natural pathogen-associated molecular pattern (PAMP) recognized by TLR7 is viral genomic ssRNA. Processing of whole virus particles into SV or SU vaccines destroys the integrity of the viral particle and leaves the viral RNA prone to degradation or involves its active removal. Our results show for a classic vaccine that the acquired immune response evoked by vaccination can be enhanced and steered by the innate immune system, which is triggered by interaction of an intrinsic vaccine component with a pattern recognition receptor (PRR). The insights presented here may be used to further improve the immune-stimulatory and dose-sparing properties of classic influenza vaccine formulations such as WIV, and will facilitate the development of new, even more powerful vaccines to face the next influenza pandemic

    Validation of Reference Genes for the Relative Quantification of Gene Expression in Human Epicardial Adipose Tissue

    Get PDF
    BACKGROUND: Relative quantification is a commonly used method for assessing gene expression, however its accuracy and reliability is dependent upon the choice of an optimal endogenous control gene, and such choice cannot be made a priori. There is limited information available on suitable reference genes to be used for studies involving human epicardial adipose tissue. The objective of the current study was to evaluate and identify optimal reference genes for use in the relative quantification of gene expression in human epicardial fat depots of lean, overweight and obese subjects. METHODOLOGY/PRINCIPAL FINDINGS: Some of the commonly used reference genes including 18S, ACTB, RPL27, HPRT, CYCA, GAPDH, RPLPO, POLR2A and B2M were quantified using real-time PCR analysis. The expression stability of these genes was evaluated using Genorm, Normfinder and Bestkeeper algorithms. In addition, the effect of sample size on the validation process was studied by randomly categorizing subjects in two cohorts of n = 2 and n = 33. CONCLUSIONS/SIGNIFICANCE: CYCA, GAPDH and RPL27 were identified as the most stable genes common to all three algorithms and both sample sizes. Their use as reference gene pairs might contribute to the enhanced robustness of relative quantification in the studies involving the human epicardial adipose tissue

    Avian Influenza Virus Glycoproteins Restrict Virus Replication and Spread through Human Airway Epithelium at Temperatures of the Proximal Airways

    Get PDF
    Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE), we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37°C), avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human proximal airways (32°C). These data support the hypothesis that avian influenza viruses, ordinarily adapted to the temperature of the avian enteric tract (40°C), rarely infect humans, in part due to differences in host airway regional temperatures. Previously, a critical residue at position 627 in the avian influenza virus polymerase subunit, PB2, was identified as conferring temperature-dependency in mammalian cells. Here, we use reverse genetics to show that avianization of residue 627 attenuates a human virus, but does not account for the different infection between 32°C and 37°C. To determine the mechanism of temperature restriction of avian influenza viruses in HAE at 32°C, we generated recombinant human influenza viruses in either the A/Victoria/3/75 (H3N2) or A/PR/8/34 (H1N1) genetic background that contained avian or avian-like glycoproteins. Two of these viruses, A/Victoria/3/75 with L226Q and S228G mutations in hemagglutinin (HA) and neuraminidase (NA) from A/Chick/Italy/1347/99 and A/PR/8/34 containing the H7 and N1 from A/Chick/Italy/1347/99, exhibited temperature restriction approaching that of wholly avian influenza viruses. These data suggest that influenza viruses bearing avian or avian-like surface glycoproteins have a reduced capacity to establish productive infection at the temperature of the human proximal airways. This temperature restriction may limit zoonotic transmission of avian influenza viruses and suggests that adaptation of avian influenza viruses to efficient infection at 32°C may represent a critical evolutionary step enabling human-to-human transmission
    • …
    corecore