432 research outputs found

    Destabilization of the thermohaline circulation by transient perturbations to the hydrological cycle

    Full text link
    We reconsider the problem of the stability of the thermohaline circulation as described by a two-dimensional Boussinesq model with mixed boundary conditions. We determine how the stability properties of the system depend on the intensity of the hydrological cycle. We define a two-dimensional parameters' space descriptive of the hydrology of the system and determine, by considering suitable quasi-static perturbations, a bounded region where multiple equilibria of the system are realized. We then focus on how the response of the system to finite-amplitude surface freshwater forcings depends on their rate of increase. We show that it is possible to define a robust separation between slow and fast regimes of forcing. Such separation is obtained by singling out an estimate of the critical growth rate for the anomalous forcing, which can be related to the characteristic advective time scale of the system.Comment: 37 pages, 8 figures, submitted to Clim. Dy

    Metabolism of synthetic cannabinoid receptor agonists encountered in clinical casework: major in vivo phase I metabolites of JWH-007, JWH-019, JWH-203, JWH-307, UR-144, XLR-11, AM-2201, MAM-2201 and AM-694 in human urine using LC-MS/MS

    Get PDF
    Background: `Herbal mixtures` containing synthetic cannabinoid receptor agonists (SCRAs) are promoted as legal alternative to marihuana and are easily available via the Internet. Keeping analytical methods for the detection of these SCRAs up-to-date is a continuous challenge for clinicians and toxicologists due to the high diversity of the chemical structures and the frequent emergence of new compounds. Since many SCRAs are extensively metabolized, analytical methods used for urine testing require previous identification of the major metabolites of each compound. Objective: The aim of this study was to identify the in vivo major metabolites of nine SCRAs (AM-694, AM-2201, JWH-007, JWH-019, JWH-203, JWH-307, MAM-2201, UR-144, XLR-11) for unambiguous detection of a drug uptake by analysis of urine samples. Method: Positive urine samples from patients of hospitals, detoxification and therapy centers as well as forensic-psychiatric clinics were analyzed by means of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and liquid chromatography-quadrupol time-of-flight mass spectrometry (LC-qToF-MS) for investigation of the in vivo major metabolites. Results: For all investigated SCRAs, monohydroxylation, dihydroxylation and/or formation of the N-pentanoic acid metabolites were among the most abundant metabolites detected in human urine samples. Substitution of the fluorine atom was observed to be an important metabolic reaction for compounds carrying an N-(5-fluoropentyl) chain. Dealkylated metabolites were not detected in vivo. Conclusion: The investigated metabolites facilitate the reliable detection of drug uptake by analysis of urine samples. For distinction between uptake of the fluorinated and the non-fluorinated analogs, the N-(4-hydroxypentyl) metabolite of the non-fluorinated analog was identified as a useful analytical target and consumption marker

    Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system

    Get PDF
    Author Posting. © Nature Publishing Group, 2007. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 450 (2007): 407-410, doi:10.1038/nature06273.Continental erosion controls atmospheric carbon dioxide levels on geological timescales through silicate weathering, riverine transport and subsequent burial of organic carbon in oceanic sediments. The efficiency of organic carbon deposition in sedimentary basins is however limited by the organic carbon load capacity of the sediments and organic carbon oxidation in continental margins. At the global scale, previous studies have suggested that about 70 per cent of riverine organic carbon is returned to the atmosphere, such as in the Amazon basin. Here we present a comprehensive organic carbon budget for the Himalayan erosional system, including source rocks, river sediments and marine sediments buried in the Bengal fan. We show that organic carbon export is controlled by sediment properties, and that oxidative loss is negligible during transport and deposition to the ocean. Our results indicate that 70 to 85 per cent of the organic carbon is recent organic matter captured during transport, which serves as a net sink for atmospheric carbon dioxide. The amount of organic carbon deposited in the Bengal basin represents about 10 to 20 per cent of the total terrestrial organic carbon buried in oceanic sediments. High erosion rates in the Himalayas generate high sedimentation rates and low oxygen availability in the Bay of Bengal that sustain the observed extreme organic carbon burial efficiency. Active orogenic systems generate enhanced physical erosion and the resulting organic carbon burial buffers atmospheric carbon dioxide levels, thereby exerting a negative feedback on climate over geological timescales

    Winter weather controls net influx of atmospheric CO2 on the north-west European shelf

    Get PDF
    Shelf seas play an important role in the global carbon cycle, absorbing atmospheric carbon dioxide (CO2) and exporting carbon (C) to the open ocean and sediments. The magnitude of these processes is poorly constrained, because observations are typically interpolated over multiple years. Here, we used 298500 observations of CO2 fugacity (fCO2) from a single year (2015), to estimate the net influx of atmospheric CO2 as 26.2 ± 4.7 Tg C yr-1 over the open NW European shelf. CO2 influx from the atmosphere was dominated by influx during winter as a consequence of high winds, despite a smaller, thermally-driven, air-sea fCO2 gradient compared to the larger, biologically-driven summer gradient. In order to understand this climate regulation service, we constructed a carbon-budget supplemented by data from the literature, where the NW European shelf is treated as a box with carbon entering and leaving the box. This budget showed that net C-burial was a small sink of 1.3 ± 3.1 Tg C yr-1, while CO2 efflux from estuaries to the atmosphere, removed the majority of river C-inputs. In contrast, the input from the Baltic Sea likely contributes to net export via the continental shelf pump and advection (34.4 ± 6.0 Tg C yr-1)

    Analysis of c-KIT expression and KIT gene mutation in human mucosal melanomas

    Get PDF
    Recent data suggested an increased frequency of KIT aberrations in mucosal melanomas, whereas c-KIT in most types of cutaneous melanomas does not appear to be of pathogenetic importance. However, studies investigating the status of the KIT gene in larger, well-characterised groups of patients with mucosal melanomas are lacking. We analysed 44 archival specimens of 39 well-characterised patients with mucosal melanomas of different locations. c-KIT protein expression was determined by immunhistochemistry, KIT gene mutations were analysed by PCR amplification and DNA sequencing of exons 9, 11, 13, 17 and 18. c-KIT protein expression could be shown in 40 out of 44 (91%) tumours in at least 10% of tumour cells. DNA sequence analysis of the KIT was successfully performed in 37 patients. In 6 out of 37 patients (16%) KIT mutations were found, five in exon 11 and one in exon 18. The presence of mutations in exon 11 correlated with a significant stronger immunohistochemical expression of c-KIT protein (P=0.015). Among the six patients with mutations, in two patients the primary tumour was located in the head/neck region, in three patients in the genitourinary tract and in one patient in the anal/rectal area. In conclusion, KIT mutations can be found in a subset of patients with mucosal melanomas irrespective of the location of the primary tumour. Our data encourage therapeutic attempts with tyrosine kinase inhibitors blocking c-KIT in these patients

    Assessment of trace metal contamination in a historical freshwater canal (Buckingham Canal), Chennai, India

    Get PDF
    The present study was done to assess the sources and the major processes controlling the trace metal distribution in sediments of Buckingham Canal. Based on the observed geochemical variations, the sediments are grouped as South Buckingham Canal and North Buckingham Canal sediments (SBC and NBC, respectively). SBC sediments show enrichment in Fe, Ti, Mn, Cr, V, Mo, and As concentrations, while NBC sediments show enrichment in Sn, Cu, Pb, Zn, Ni, and Hg. The calculated Chemical Index of Alteration and Chemical Index of Weathering values for all the sediments are relatively higher than the North American Shale Composite and Upper Continental Crust but similar to Post-Archaean Average Shale, and suggest a source area with moderate weathering. Overall, SBC sediments are highly enriched in Mo, Zn, Cu, and Hg (geoaccumulation index (Igeo) class 4– 6), whereas NBC sediments are enriched in Sn, Cu,Zn, and Hg (Igeo class 4–6). Cu, Ni, and Cr show higher than Effects-Range Median values and hence the biological adverse effect of these metals is 20%; Zn, which accounts for 50%, in the NBC sediments, has a more biological adverse effect than other metalsfound in these sediments. The calculated Igeo, Enrichment Factor, and Contamination Factor values indicate that Mo, Hg, Sn, Cu, and Zn are highly enriched in the Buckingham Canal sediments, suggesting the rapid urban and industrial development of Chennai MetropolitanCity have negatively influenced on the surrounding aquatic ecosystem
    • 

    corecore