29 research outputs found
Baltic cod recruitment – the impact of climate variability on key processes
Large-scale climatic conditions prevailing over the central Baltic Sea resulted in declining salinity and oxygen concentrations in spawning areas of the eastern Baltic cod stock. These changes in hydrography reduced the reproductive success and, combined with high fishing pressure, caused a decline of the stock to the lowest level on record in the early 1990s. The present study aims at disentangling the interactions between reproductive effort and hydrographic forcing leading to variable recruitment. Based on identified key processes, stock dynamics is explained using updated environmental and life stage-specific abundance and production time-series. Declining salinities and oxygen concentrations caused high egg mortalities and indirectly increased egg predation by clupeid fish. Low recruitment, despite enhanced hydrographic conditions for egg survival in the mid-1990s, was due to food limitation for larvae, caused by the decline in the abundance of the copepod Pseudocalanus sp. The case of the eastern Baltic cod stock exemplifies the multitude effects climatic variability may have on a fish stock and underscores the importance of knowledge of these processes for understanding stock dynamics
A statistical model for estimation of fish density including correlation in size, space, time and between species from research survey data
Trawl survey data with high spatial and seasonal coverage were analysed using a variant of the Log Gaussian Cox Process (LGCP) statistical model to estimate unbiased relative fish densities. The model estimates correlations between observations according to time, space, and fish size and includes zero observations and over-dispersion. The model utilises the fact the correlation between numbers of fish caught increases when the distance in space and time between the fish decreases, and the correlation between size groups in a haul increases when the difference in size decreases. Here the model is extended in two ways. Instead of assuming a natural scale size correlation, the model is further developed to allow for a transformed length scale. Furthermore, in the present application, the spatial- and size-dependent correlation between species was included. For cod (Gadus morhua) and whiting (Merlangius merlangus), a common structured size correlation was fitted, and a separable structure between the time and space-size correlation was found for each species, whereas more complex structures were required to describe the correlation between species (and space-size). The within-species time correlation is strong, whereas the correlations between the species are weaker over time but strong within the year
Could Seals Prevent Cod Recovery in the Baltic Sea?
Fish populations are increasingly affected by multiple human and natural impacts including exploitation, eutrophication, habitat alteration and climate change. As a result many collapsed populations may have to recover in ecosystems whose structure and functioning differ from those in which they were formerly productive and supported sustainable fisheries. Here we investigate how a cod (Gadus morhua) population in the Baltic Sea whose biomass was reduced due to a combination of high exploitation and deteriorating environmental conditions might recover and develop in the 21st century in an ecosystem that likely will change due to both the already started recovery of a cod predator, the grey seal Halichoerus grypus, and projected climate impacts. Simulation modelling, assuming increased seal predation, fishing levels consistent with management plan targets and stable salinity, shows that the cod population could reach high levels well above the long-term average. Scenarios with similar seal and fishing levels but with 15% lower salinity suggest that the Baltic will still be able to support a cod population which can sustain a fishery, but biomass and yields will be lower. At present knowledge of cod and seal interactions, seal predation was found to have much lower impact on cod recovery, compared to the effects of exploitation and salinity. These results suggest that dual management objectives (recovery of both seal and cod populations) are realistic but success in achieving these goals will also depend on how climate change affects cod recruitment
The importance of benthic-pelagic coupling for marine ecosystem functioning in a changing world
Benthic-pelagic coupling is manifested as the exchange of energy, mass, or nutrients between benthic and pelagic habitats. It plays a prominent role in aquatic ecosystems, and it is crucial to functions from nutrient cycling to energy transfer in food webs. Coastal and estuarine ecosystem structure and function are strongly affected by anthropogenic pressures; however, there are large gaps in our understanding of the responses of inorganic nutrient and organic matter fluxes between benthic habitats and the water column. We illustrate the varied nature of physical and biological benthic-pelagic coupling processes and their potential sensitivity to three anthropogenic pressures - climate change, nutrient loading, and fishing - using the Baltic Sea as a case study and summarize current knowledge on the exchange of inorganic nutrients and organic material between habitats. Traditionally measured benthic-pelagic coupling processes (e.g., nutrient exchange and sedimentation of organic material) are to some extent quantifiable, but the magnitude and variability of biological processes are rarely assessed, preventing quantitative comparisons. Changing oxygen conditions will continue to have widespread effects on the processes that govern inorganic and organic matter exchange among habitats while climate change and nutrient load reductions may have large effects on organic matter sedimentation. Many biological processes (predation, bioturbation) are expected to be sensitive to anthropogenic drivers, but the outcomes for ecosystem function are largely unknown. We emphasize how improved empirical and experimental understanding of benthic-pelagic coupling processes and their variability are necessary to inform models that can quantify the feedbacks among processes and ecosystem responses to a changing world.Peer reviewe
Hidden variables in a Dynamic Bayesian Network identify ecosystem level change
EU; The Academy of Finland; Projektträger Jülich (PtJ); Germany; The State Education Development Agency of Latvia; The National Centre for Research and Development, Poland; The Swedish Research Council Formas; BalticEye Stockholm University; foundation BalticSea202
Localisation of nursery areas based on comparative analyses of the horizontal and vertical distribution patterns of juvenile Baltic cod (Gadus morhua)
Knowledge of the spatial distribution of juvenile cod is essential for obtaining precise recruitment data to conduct sustainable management of the eastern and western Baltic cod stocks. In this study, the horizontal and vertical distribution and density patterns of settled juvenile 0- and 1-group Baltic cod are determined, and their nursery areas are localised according to the environmental factors affecting them. Comparative statistical analyses of biological, hydrographic and hydroacoustic data are carried out based on standard ICES demersal trawl surveys and special integrated trawl and acoustic research surveys. Horizontal distribution maps for the 2001-2010 cohorts of juvenile cod are further generated by applying a statistical log-Gaussian Cox process model to the standard trawl survey data. The analyses indicate size-dependent horizontal and distinct vertical and diurnal distribution patterns related to the seabed topography, water layer depth, and the presence of hydrographic frontal zones (pycnoclines) as well as intraspecific patterns in relation to the presence of adult cod. The extent of the nursery areas also depends on the cod year class strength. Juvenile cod (≥3 cm) are present in all areas of the central Baltic Sea (CBS), showing broad dispersal. However, their highest density in the Baltic Basins is found at localities with a 40-70 m bottom depth in waters with oxygen concentrations above 2 ml O₂.l⁻¹ and temperatures above 5°C. The smallest juveniles are also found in deep sea localities down to a 100 m depth and at oxygen concentrations between 2-4 ml O₂.l⁻¹. The vertical, diurnally stratified and repeated trawling and hydroacoustic target strength-depth distributions obtained from the special surveys show juvenile cod concentrations in frontal zone water layers (pycnocline). However, the analyses indicate that in the CBS, juvenile cod of all sizes do not appear to aggregate in dense schooling patterns, which differs from what has been reported from the North Sea
The structure and dynamics of fi sh communities in the Latvian coastal zone (Pape -Pērkone), Baltic Sea
Abstract The fi sh biodiversity in the Baltic Sea coastal area was analysed in 1998 -2002. Different ecological groups -marine, diadromous and freshwater -were captured in survey gillnets and beach seine catches. The coastal fi sh communities revealed a strong seasonal variation. The water temperature increase early in the spring caused migration of juveniles and adult marine fi shes from depths to the nursery, spawning and feeding grounds located in the coastal waters. In summer mostly diadromous and freshwater fi sh species migrated from the adjacent freshwater basins to the sea coastal feeding grounds. In 1998-2002 fi sh communities comprised representatives of various ecological types. The available information from the monitoring combined with the fi sheries data could facilitate an ecologically-focused management of the coastal zone ecosystem