25 research outputs found

    Mecp2-null mice provide new neuronal targets for Rett syndrome

    Get PDF
    BACKGROUND: Rett syndrome (RTT) is a complex neurological disorder that is one of the most frequent causes of mental retardation in women. A great landmark in research in this field was the discovery of a relationship between the disease and the presence of mutations in the gene that codes for the methyl-CpG binding protein 2 (MeCP2). Currently, MeCP2 is thought to act as a transcriptional repressor that couples DNA methylation and transcriptional silencing. The present study aimed to identify new target genes regulated by Mecp2 in a mouse model of RTT. METHODOLOGY/PRINCIPAL FINDINGS: We have compared the gene expression profiles of wild type (WT) and Mecp2-null (KO) mice in three regions of the brain (cortex, midbrain, and cerebellum) by using cDNA microarrays. The results obtained were confirmed by quantitative real-time PCR. Subsequent chromatin immunoprecipitation assays revealed seven direct target genes of Mecp2 bound in vivo (Fkbp5, Mobp, Plagl1, Ddc, Mllt2h, Eya2, and S100a9), and three overexpressed genes due to an indirect effect of a lack of Mecp2 (Irak1, Prodh and Dlk1). The regions bound by Mecp2 were always methylated, suggesting the involvement of the methyl-CpG binding domain of the protein in the mechanism of interaction. CONCLUSIONS: We identified new genes that are overexpressed in Mecp2-KO mice and are excellent candidate genes for involvement in various features of the neurological disease. Our results demonstrate new targets of MeCP2 and provide us with a better understanding of the underlying mechanisms of RTT

    Conservation of aging and cancer epigenetic signatures across human and mouse

    Get PDF
    Aging and cancer are two interrelated processes, with aging being a major risk factor for the development of cancer. Parallel epigenetic alterations have been described for both, although differences, especially within the DNA hypomethylation scenario, have also been recently reported. While many of these observations arise from the use of mouse models, there is a lack of systematic comparisons of human and mouse epigenetic patterns in the context of disease. However, such comparisons are significant as they allow to establish the extent to which some of the observed similarities or differences arise from pre-existing species-specific epigenetic traits. Here, we have used reduced representation bisulfite sequencing to profile the brain methylomes of young and old, tumoral and non-tumoral brain samples from human and mouse. We first characterized the baseline epigenomic patterns of the species and subsequently focused on the DNA methylation alterations associated with cancer and aging. Next, we described the functional genomic and epigenomic context associated with the alterations, and finally we integrated our data to study interspecies DNA methylation levels at orthologous CpG sites. Globally, we found considerable differences between the characteristics of DNA methylation alterations in cancer and aging in both species. Moreover, we describe robust evidence for the conservation of the specific cancer and aging epigenomic signatures in human and mouse. Our observations point towards the preservation of the functional consequences of these alterations at multiple levels of genomic regulation. Finally, our analyses reveal a role for the genomic context in explaining disease- and species-specific epigenetic traits.© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution

    Epigenetic Profiling and Response to CD19 Chimeric Antigen Receptor T-Cell Therapy in B-Cell Malignancies

    Get PDF
    Background: Chimeric antigen receptor (CAR) T cells directed against CD19 (CART19) are effective in B-cell malignancies, but little is known about the molecular factors predicting clinical outcome of CART19 therapy. The increasingly recognized relevance of epigenetic changes in cancer immunology prompted us to determine the impact of the DNA methylation profiles of CART19 cells on the clinical course. Methods: We recruited 114 patients with B-cell malignancies, comprising 77 patients with acute lymphoblastic leukemia and 37 patients with non-Hodgkin lymphoma who were treated with CART19 cells. Using a comprehensive DNA methylation microarray, we determined the epigenomic changes that occur in the patient T cells upon transduction of the CAR vector. The effects of the identified DNA methylation sites on clinical response, cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, event-free survival, and overall survival were assessed. All statistical tests were 2-sided. Results: We identified 984 genomic sites with differential DNA methylation between CAR-untransduced and CAR-transduced T cells before infusion into the patient. Eighteen of these distinct epigenetic loci were associated with complete response (CR), adjusting by multiple testing. Using the sites linked to CR, an epigenetic signature, referred to hereafter as the EPICART signature, was established in the initial discovery cohort (n = 79), which was associated with CR (Fisher exact test, P < .001) and enhanced event-free survival (hazard ratio [HR] = 0.36; 95% confidence interval [CI] = 0.19 to 0.70; P = .002; log-rank P = .003) and overall survival (HR = 0.45; 95% CI = 0.20 to 0.99; P = .047; log-rank P = .04;). Most important, the EPICART profile maintained its clinical course predictive value in the validation cohort (n = 35), where it was associated with CR (Fisher exact test, P < .001) and enhanced overall survival (HR = 0.31; 95% CI = 0.11 to 0.84; P = .02; log-rank P = .02). Conclusions: We show that the DNA methylation landscape of patient CART19 cells influences the efficacy of the cellular immunotherapy treatment in patients with B-cell malignancy.Supported by CERCA Programme/Generalitat de Catalunya, Health Department PERIS #SLT/002/16/00374, AGAUR-project #2017SGR1080; MCI/AEI/ERDF project #RTI2018-094049-B-I00; ERC EPIPHARM; Cellex Foundation; “la Caixa” Foundation (LCF/PR/GN18/51140001 and LCF/PR/GN18/50310007), RF-2016–02364388, Accelerator Award—Cancer Research UK/AIRC—INCAR Associazione Italiana Ricerca per la Ricerca sul Cancro (AIRC) Project 5 × 1000 no. 9962, AIRC IG 2018 id. 21724, AIRC MFAG id. 21769 and id. 20450; MIUR (Grant PRIN 2017); and RCR-2019–23669115

    H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells

    Get PDF
    In differentiated cells, aging is associated with hypermethylation of DNA regions enriched in repressive histone post-translational modifications. However, the chromatin marks associated with changes in DNA methylation in adult stem cells during lifetime are still largely unknown. Here, DNA methylation profiling of mesenchymal stem cells (MSCs) obtained from individuals aged 2 to 92 yr identified 18,735 hypermethylated and 45,407 hypomethylated CpG sites associated with aging. As in differentiated cells, hypermethylated sequences were enriched in chromatin repressive marks. Most importantly, hypomethylated CpG sites were strongly enriched in the active chromatin mark H3K4me1 in stem and differentiated cells, suggesting this is a cell type-independent chromatin signature of DNA hypomethylation during aging. Analysis of scedasticity showed that interindividual variability of DNA methylation increased during aging in MSCs and differentiated cells, providing a new avenue for the identification of DNA methylation changes over time. DNA methylation profiling of genetically identical individuals showed that both the tendency of DNA methylation changes and scedasticity depended on nongenetic as well as genetic factors. Our results indicate that the dynamics of DNA methylation during aging depend on a complex mixture of factors that include the DNA sequence, cell type, and chromatin context involved and that, depending on the locus, the changes can be modulated by genetic and/or external factors

    Epigenetic deregulation of the histone methyltransferase KMT5B contributes to malignant transformation in glioblastoma

    Get PDF
    Glioblastoma multiforme (GBM) is the most common and aggressive type of brain tumor in adulthood. Epigenetic mechanisms are known to play a key role in GBM although the involvement of histone methyltransferase KMT5B and its mark H4K20me2 has remained largely unexplored. The present study shows that DNA hypermethylation and loss of DNA hydroxymethylation is associated with KMT5B downregulation and genome-wide reduction of H4K20me2 levels in a set of human GBM samples and cell lines as compared with non-tumoral specimens. Ectopic overexpression of KMT5B induced tumor suppressor-like features in vitro and in a mouse tumor xenograft model, as well as changes in the expression of several glioblastoma-related genes. H4K20me2 enrichment was found immediately upstream of the promoter regions of a subset of deregulated genes, thus suggesting a possible role for KMT5B in GBM through the epigenetic modulation of key target cancer genes.This research was funded by the Health Institute Carlos III (Plan Nacional de I+D+I) cofounding FEDER (PI15/00892 and PI18/01527 to MF and AF); the Government of the Principality of Asturias PCTI-Plan de Ciencia, Tecnología e Innovación de Asturias co-funding 2018–2022/FEDER (IDI/2018/146 to MF); AECC (PROYE18061FERN to MF); FGCSIC (0348_CIE_6_E to MF); Severo Ochoa Program BP17-165 to PS-O and BP17-114 to RP); the Ministry of Economy and Competitiveness of Spain (VL, Juan de la Cierva fellowship IJCI-2015-23316; JT, Juan de la Cierva fellowship FJCI-2015-26965); FICYT (AC and MG); FINBA-ISPA (VL); and IUOPA (VL and CM). The IUOPA is supported by the Obra Social Cajastur-Liberbank, Spain.Peer reviewe

    H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells

    Get PDF
    In differentiated cells, aging is associated with hypermethylation of DNA regions enriched in repressive histone post-translational modifications. However, the chromatin marks associated with changes in DNA methylation in adult stem cells during lifetime are still largely unknown. Here, DNA methylation profiling of mesenchymal stem cells (MSCs) obtained from individuals aged 2 to 92 yr identified 18,735 hypermethylated and 45,407 hypomethylated CpG sites associated with aging. As in differentiated cells, hypermethylated sequences were enriched in chromatin repressive marks. Most importantly, hypomethylated CpG sites were strongly enriched in the active chromatin mark H3K4me1 in stem and differentiated cells, suggesting this is a cell type-independent chromatin signature of DNA hypomethylation during aging. Analysis of scedasticity showed that interindividual variability of DNA methylation increased during aging in MSCs and differentiated cells, providing a new avenue for the identification of DNA methylation changes over time. DNA methylation profiling of genetically identical individuals showed that both the tendency of DNA methylation changes and scedasticity depended on nongenetic as well as genetic factors. Our results indicate that the dynamics of DNA methylation during aging depend on a complex mixture of factors that include the DNA sequence, cell type, and chromatin context involved and that, depending on the locus, the changes can be modulated by genetic and/or external factors

    The RNA-binding protein HuR regulates DNA methylation through stabilization of DNMT3b mRNA

    Get PDF
    The molecular basis underlying the aberrant DNA-methylation patterns in human cancer is largely unknown. Altered DNA methyltransferase (DNMT) activity is believed to contribute, as DNMT expression levels increase during tumorigenesis. Here, we present evidence that the expression of DNMT3b is post-transcriptionally regulated by HuR, an RNA-binding protein that stabilizes and/or modulates the translation of target mRNAs. The presence of a putative HuR-recognition motif in the DNMT3b 3′UTR prompted studies to investigate if this transcript associated with HuR. The interaction between HuR and DNMT3b mRNA was studied by immunoprecipitation of endogenous HuR ribonucleoprotein complexes followed by RT–qPCR detection of DNMT3b mRNA, and by in vitro pulldown of biotinylated DNMT3b RNAs followed by western blotting detection of HuR. These studies revealed that binding of HuR stabilized the DNMT3b mRNA and increased DNMT3b expression. Unexpectedly, cisplatin treatment triggered the dissociation of the [HuR-DNMT3b mRNA] complex, in turn promoting DNMT3b mRNA decay, decreasing DNMT3b abundance, and lowering the methylation of repeated sequences and global DNA methylation. In summary, our data identify DNMT3b mRNA as a novel HuR target, present evidence that HuR affects DNMT3b expression levels post-transcriptionally, and reveal the functional consequences of the HuR-regulated DNMT3b upon DNA methylation patterns

    The outcome of boosting mitochondrial activity in alcohol-associated liver disease is organ-dependent.

    Get PDF
    BACKGROUND AND AIMS Alcohol-associated liver disease (ALD) accounts for 70% of liver-related deaths in Europe, with no effective approved therapies. Although mitochondrial dysfunction is one of the earliest manifestations of alcohol-induced injury, restoring mitochondrial activity remains a problematic strategy due to oxidative stress. Here, we identify methylation-controlled J protein (MCJ) as a mediator for ALD progression and hypothesize that targeting MCJ may help in recovering mitochondrial fitness without collateral oxidative damage. APPROACH AND RESULTS C57BL/6 mice [wild-type (Wt)] Mcj knockout and Mcj liver-specific silencing (MCJ-LSS) underwent the NIAAA dietary protocol (Lieber-DeCarli diet containing 5% (vol/vol) ethanol for 10 days, plus a single binge ethanol feeding at day 11). To evaluate the impact of a restored mitochondrial activity in ALD, the liver, gut, and pancreas were characterized, focusing on lipid metabolism, glucose homeostasis, intestinal permeability, and microbiota composition. MCJ, a protein acting as an endogenous negative regulator of mitochondrial respiration, is downregulated in the early stages of ALD and increases with the severity of the disease. Whole-body deficiency of MCJ is detrimental during ALD because it exacerbates the systemic effects of alcohol abuse through altered intestinal permeability, increased endotoxemia, and dysregulation of pancreatic function, which overall worsens liver injury. On the other hand, liver-specific Mcj silencing prevents main ALD hallmarks, that is, mitochondrial dysfunction, steatosis, inflammation, and oxidative stress, as it restores the NAD + /NADH ratio and SIRT1 function, hence preventing de novo lipogenesis and improving lipid oxidation. CONCLUSIONS Improving mitochondrial respiration by liver-specific Mcj silencing might become a novel therapeutic approach for treating ALD.This work was supported by grants from Ministerio de Ciencia e Innovación, Programa Retos-Colaboración RTC2019-007125-1 (for Jorge Simon and Maria Luz Martinez-Chantar); Ministerio de Economía, Industria y Competitividad, Retos a la Sociedad AGL2017- 86927R (for F.M.); Instituto de Salud Carlos III, Proyectos de Investigación en Salud DTS20/00138 and DTS21/00094 (for Jorge Simon and Maria Luz Martinez-Chantar, and Asis Palazon. respectively); Instituto de Salud Carlos III, Fondo de Investigaciones Sanitarias co-founded by European Regional Development Fund/European Social Fund, “Investing in your future” PI19/00819, “Una manera de hacer Europa” FIS PI20/00765, and PI21/01067 (for Jose J. G. Marin., Pau Sancho-Bru,. and Mario F. Fraga respectively); Departamento de Industria del Gobierno Vasco (for Maria Luz Martinez-Chantar); Asturias Government (PCTI) co-funding 2018-2023/ FEDER IDI/2021/000077 (for Mario F. Fraga.); Ministerio de Ciencia, Innovación y Universidades MICINN: PID2020-117116RB-I00, CEX2021-001136-S PID2020-117941RB-I00, PID2020-11827RB-I00 and PID2019-107956RA-100 integrado en el Plan Estatal de Investigación Científica y Técnica y Innovación, cofinanciado con Fondos FEDER (for Maria Luz Martinez-Chantar, Francisco J Cubero., Yulia A Nevzorova and Asis Palazon); Ayudas Ramón y Cajal de la Agencia Estatal de Investigación RY2013-13666 and RYC2018- 024183-I (for Leticia Abecia and Asis Palazon); European Research Council Starting Grant 804236 NEXTGEN-IO (for Asis Palazon); The German Research Foundation SFB/TRR57/P04, SFB1382-403224013/ A02 and DFG NE 2128/2-1 (for Francisco J Cubero and Yulia A Nevzorova); National Institute of Health (NIH)/National Institute of Alcohol Abuse and Alcoholism (NIAAA) 1U01AA026972-01 (For Pau Sancho-Bru); Junta de Castilla y León SA074P20 (for Jose J. G. Marin); Junta de Andalucía, Grupo PAIDI BIO311 (for Franz Martin); CIBERER Acciones Cooperativas y Complementarias Intramurales ACCI20-35 (for Mario F. Fraga); Ministerio de Educación, Cultura y Deporte FPU17/04992 (for Silvia Ariño); Fundació Marato TV3 201916-31 (for Jose J. G. Marin.); Ainize Pena-Cearra is a fellow of the University of the Basque Country (UPV/ EHU); BIOEF (Basque Foundation for Innovation and Health Research); Asociación Española contra el Cáncer (Maria Luz Martinez-Chantar and Teresa C. Delgado.); Fundación Científica de la Asociación Española Contra el Cáncer (AECC Scientific Foundation) Rare Tumor Calls 2017 (for Maria Luz Martinez-Chantar); La Caixa Foundation Program (for Maria Luz Martinez-Chantar); Proyecto Desarrollo Tecnologico CIBERehd (for Maria Luz Martinez-Chantar); Ciberehd_ISCIII_MINECO is funded by the Instituto de Salud Carlos III.S

    Physical exercise shapes the mouse brain epigenome

    Get PDF
    [Objective]: To analyze the genome-wide epigenomic and transcriptomic changes induced by long term resistance or endurance training in the hippocampus of wild-type mice.[Methods]: We performed whole-genome bisulfite sequencing (WGBS) and RNA sequencing (RNA-seq) of mice hippocampus after 4 weeks of specific training. In addition, we used a novel object recognition test before and after the intervention to determine whether the exercise led to an improvement in cognitive function.[Results]: Although the majority of DNA methylation changes identified in this study were training-model specific, most were associated with hypomethylation and were enriched in similar histone marks, chromatin states, and transcription factor biding sites. It is worth highlighting the significant association found between the loss of DNA methylation in Tet1 binding sites and gene expression changes, indicating the importance of these epigenomic changes in transcriptional regulation. However, endurance and resistance training activate different gene pathways, those being associated with neuroplasticity in the case of endurance exercise, and interferon response pathways in the case of resistance exercise, which also appears to be associated with improved learning and memory functions.[Conclusions]: Our results help both understand the molecular mechanisms by which different exercise models exert beneficial effects for brain health and provide new potential therapeutic targets for future research.This work was supported by the Spanish Association Against Cancer (PROYE18061FERN to M.F.F.), the Asturias Government (PCTI) co-funding 2018-2022/FEDER (IDI/2018/146 to M.F.F.), the Fundación General CSIC (0348_CIE_6_E to M.F.F.), the Health Institute Carlos III (Plan Nacional de I+D+I) co-funding FEDER (PI18/01527 to M.F.F and A.F.F.), the MINECO (DEP2015-69980-P to B.F.G.), and the Fundación Tatiana Pérez de Guzmán el Bueno (“Ayudas a Proyectos de Investigación en Neurociencia-2020” to C.T.Z and E.I.G.). R.G.U. is supported by the Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER). J.R.T. is supported by a Juan de la Cierva fellowship from the Spanish Ministry of Science and Innovation MCIN/AEI /10.13039/501100011033 (IJC2018-036825-I). R.F.P. is supported by the Severo Ochoa program (BP17-114). P.P.H. is supported by Ayudas para la realización de Tesis Doctorales. Modalidad A fellowship from the University of Oviedo (PAPI-20-PF-19). We also acknowledge support from the IUOPA-ISPA-FINBA (the IUOPA is supported by the Obra Social Cajastur-Liberbank, Spain).Peer reviewe

    A promoter DNA demethylation landscape of human hematopoietic differentiation

    Get PDF
    Global mechanisms defining the gene expression programs specific for hematopoiesis are still not fully understood. Here, we show that promoter DNA demethylation is associated with the activation of hematopoietic-specific genes. Using genome-wide promoter methylation arrays, we identified 694 hematopoietic-specific genes repressed by promoter DNA methylation in human embryonic stem cells and whose loss of methylation in hematopoietic can be associated with gene expression. The association between promoter methylation and gene expression was studied for many hematopoietic-specific genes including CD45, CD34, CD28, CD19, the T cell receptor (TCR), the MHC class II gene HLA-DR, perforin 1 and the phosphoinositide 3-kinase (PI3K) and results indicated that DNA demethylation was not always sufficient for gene activation. Promoter demethylation occurred either early during embryonic development or later on during hematopoietic differentiation. Analysis of the genome-wide promoter methylation status of induced pluripotent stem cells (iPSCs) generated from somatic CD34+ HSPCs and differentiated derivatives from CD34+ HSPCs confirmed the role of DNA methylation in regulating the expression of genes of the hemato-immune system, and indicated that promoter methylation of these genes may be associated to stemness. Together, these data suggest that promoter DNA demethylation might play a role in the tissue/cell-specific genome-wide gene regulation within the hematopoietic compartment
    corecore