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H3K4me1 marks DNA regions hypomethylated during
aging in human stem and differentiated cells
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In differentiated cells, aging is associated with hypermethylation of DNA regions enriched in repressive histone post-
translational modifications. However, the chromatin marks associated with changes in DNA methylation in adult stem
cells during lifetime are still largely unknown. Here, DNA methylation profiling of mesenchymal stem cells (MSCs)
obtained from individuals aged 2 to 92 yr identified 18,735 hypermethylated and 45,407 hypomethylated CpG sites
associated with aging. As in differentiated cells, hypermethylated sequences were enriched in chromatin repressive marks.
Most importantly, hypomethylated CpG sites were strongly enriched in the active chromatin mark H3K4me1 in stem and
differentiated cells, suggesting this is a cell type–independent chromatin signature of DNAhypomethylation during aging.
Analysis of scedasticity showed that interindividual variability of DNA methylation increased during aging in MSCs and
differentiated cells, providing a new avenue for the identification of DNA methylation changes over time. DNA meth-
ylation profiling of genetically identical individuals showed that both the tendency of DNA methylation changes and
scedasticity depended on nongenetic as well as genetic factors. Our results indicate that the dynamics of DNAmethylation
during aging depend on a complex mixture of factors that include the DNA sequence, cell type, and chromatin context
involved and that, depending on the locus, the changes can be modulated by genetic and/or external factors.

[Supplemental material is available for this article.]

Genomic DNA methylation is known to change during lifetime

and aging (Jaenisch and Bird 2003). Some changes play important

roles in development, but others occur stochastically without any

apparent biological purpose (Fraga 2009; Feil and Fraga 2012).

These molecular alterations, which are known as epigenetic drift,

are currently being investigated as they have been proposed to

account for many age-related diseases (Bjornsson et al. 2004; Heyn
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et al. 2013; Timp and Feinberg 2013). Various recent studies using

1.5K and 27K Illumina methylation arrays have identified a group

of gene promoters in blood that becomes hypermethylated during

aging (Christensen et al. 2009; Rakyan et al. 2010; Teschendorff

et al. 2010; Bell et al. 2012; Fernandez et al. 2012). Interestingly,

some of these studies have also shown that these DNA sequences

are enriched in bivalent chromatin domains in embryonic stem

cells (Rakyan et al. 2010; Fernandez et al. 2012; Heyn et al. 2012)

and repressive histone marks such as H3K9me3 and H3K27me3 in

differentiated cells (Rakyan et al. 2010), and that many of them

are also frequently hypermethylated in cancer. However, draw-

ing conclusions from some of these studies is limited by their

low genome coverage (< 0.1%) and the location of the sequences

analyzed (mainly at gene promoters). Further studies using

Infinium HumanMethylation450 BeadChip and larger cohorts

(Heyn et al. 2012; Hannum et al. 2013; Johansson et al. 2013) have,

though, corroborated most of the previous observations with the

27K methylation arrays and have, in addition, identified new sets

of genes that become hypermethylated and hypomethylated during

aging in humans. Finally, a recent study that analyzed the genome-

wide DNA methylation status of newborns, middle-aged in-

dividuals, and centenarians confirmed the results obtained with

the methylation arrays and showed that aging is associated with

overall hypomethylation, which primarily occurs at repetitive

DNA sequences (Heyn et al. 2012). Most of the above studies were

conducted with whole blood, and consequently, changes in cell

heterogeneity during aging could have affected the results

(Calvanese et al. 2012; Houseman et al. 2012). However, some

genes presented consistent changes in different tissues, which in-

dicates that in some cases, the changes truly are associated with

aging (Rakyan et al. 2010; Horvath et al. 2012). Interestingly,

Houseman et al. (2012) have recently reported an algorithm that,

using the DNA methylation values of certain genes, estimates the

relative proportion of the different blood cell types in a specific

sample. This algorithmwas successfully used by Liu et al. (2013) in

a study to identify DNA methylation alterations associated with

rheumatoid arthritis.

In addition to the studies using blood, other works have

identified specific DNA methylation signatures of aging in differ-

entiated cell types, including the brain (Hernandez et al. 2011;

Numata et al. 2012; Guintivano et al. 2013; Lister et al. 2013),

muscle (Zykovich et al. 2014), and saliva (Bocklandt et al. 2011).

Two studies have analyzed DNA methylation during aging in hu-

man adult stem cells: Bork et al. (2010) used 27K methylation ar-

rays to analyze the DNAmethylation status of mesenchymal stem

cells (MSCs) obtained from young (21–50 yr) and old donors (53–

85 yr) and found similar DNA methylation changes over time

during prolonged in vitro culture and in vivo aging. Using the

same methylation arrays, Bocker et al. (2011) observed a bimodal

pattern of methylation changes in older hematopoietic progenitor

cells, with hypomethylation of differentiation-associated genes, as

well as de novo methylation events resembling epigenetic muta-

tions. Recent studies in mice have revealed a number of genome-

wide alterations inDNAmethylation (Taiwo et al. 2013) thatmight

play an important role in the functional decline of hematopoietic

stem cells (HSCs) during aging (Beerman et al. 2013). To study the

role of DNA methylation in adult stem cell aging further, the

present study used the HumanMethylation450 BeadChip to

characterize the genome-wide DNA methylation status of bone

marrow MSCs obtained from individuals aged between 2 and

92 yr.We then systematically compared our results with previously

published data to identify the chromatin signatures associated

with DNA methylation changes in adult stem cells and to de-

termine whether these changes were also present in other tissues.

Finally, we analyzed monozygotic (MZ) twins of different ages to

determine the effect of genetic factors on the DNA methylation

changes during aging identified in our study.

Results

Global DNA methylation profiling in adult MSCs

To identify DNA methylation changes during MSC aging, we

compared the DNA methylation status of 429,789 CpG sites in 34

independently isolated primary MSCs, obtained from individuals

from 2–92 yr old, using the HumanMethylation450 BeadChip

(Illumina) (Supplemental Fig. S1; Supplemental Table 1).

Using an empirical Bayes moderated t-test (see Methods), we

first identified 64,142 autosomal CpG sites that were differentially

methylated (dmCpGs; FDR < 0.05) between MSCs obtained from

young (ages ranging from 2 to 22 yr) and elderly (aged between 61

and 91 yr) individuals. Hierarchical clustering of all samples us-

ing the dmCpGs alone enabled each sample to be correctly al-

located to its corresponding age group (Fig. 1A). Of the dmCpG

sites, 18,735 (29.20%) had become hypermethylated and 45,407

(70.80%) had become hypomethylated with aging (Fig. 1B; Sup-

plemental Tables 2, 3).

To study the characteristics of these dmCpG sites from

a functional genomics point of view, we first determined their

distribution within the different regions of the CpG islands (CGIs)

(Wu et al. 2010). Interestingly, both hyper- and hypomethylated

CpG sites were enriched in non-CGIs (x2 test; P < 0.001, OR = 2.58

and P < 0.001, OR = 1.76, respectively) (Fig. 1C) and in intragenic

DNA regions (x2 test; P < 0.001, OR = 1.23 and P < 0.001, OR = 1.34,

respectively) (Fig. 1D).

To validate the results obtained with the methylation arrays,

we randomly selected five of the sequences previously identified,

and we analyzed their methylation status by bisulfite pyrose-

quencing in an independent cohort of 46 MSCs obtained from

individuals 7 mo to 80 yr old (Supplemental Table 1). In total, in

the validation phase we obtained information on the DNA meth-

ylation status of 950 CpGs. The sequences selected corresponded

to the genes HAND2 and SIX2, which become hypermethylated

with aging, and to the genes TBX15, PITX2, and HOXA11, which

become hypomethylated. Bisulfite pyrosequencing results showed

that all the sequences selected for validation displayed the same

DNA methylation dynamics during aging as in the study samples

(Fig. 1E).

Tissue-specific DNA methylation changes during aging

Global DNA methylation patterns are tissue/cell type specific

(Calvanese et al. 2012). To determine whether the CpG sites dis-

playing DNAmethylation changes during aging in adult stem cells

are also affected in differentiated tissues, we used the same work-

flow described in the previous section to analyze the data obtained

in previous aging studies which used the same methylation arrays

with samples from blood (human whole blood from a mixed

population of 426 Caucasian and 230 Hispanic individuals, with

ages ranging from 19 to 101) and brain (neuronal and glial cells,

from post-mortem frontal cortex of 29 healthy individuals [14

male, 15 female, aged 32.6 6 16.1]) (Supplemental Fig. S1;

Guintivano et al. 2013; Hannum et al. 2013). To reduce confound-

ing factors in the blood data set, we first corrected for cellular het-

erogeneity with respect to the major cell subtypes (Houseman et al.
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Figure 1. DNA methylation changes during MSC aging. (A) Unsupervised hierarchical clustering and heatmap including the 15,000most variable CpG sites
with differential DNAmethylation between young and oldMSCs. Averagemethylation values are displayed from zero (blue) to one (yellow). (B) Density plot for
differentiallymethylated CpG sites between representative young (2-yr-old [2-yo]) and old (87-yr-old [87-yo]) MSCs. (C ) Distribution of differentially methylated
CpGs relative to the CpG island. (D) Relative distribution of differentially methylated CpGs across different genomic regions. (E) Examples of aging-specific CpG
methylation, in particular, genes further validated by pyrosequencing in an independent set of samples. For each of the genes of interest, a scatter plot of the
percentage ofmethylation obtained for each sample andCpGof interest is shown. The twogenes at the top showan age-dependent hypermethylation tendency,
while the three genes at the bottom showhypomethylationwith respect to age. Each point represents a single observation for a given sample andCpGof interest.
The blue line represents a linear model fit. A 0.95 confidence interval of the fitted model is shown in gray. (F) Venn diagrams showing the number of CpG sites
(hyper- and hypomethylated) shared by the different tissues
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2012) to filter out only those associations that were the conse-

quence of aging. Using this approach, we identified 63,512

hypermethylated and 60,155 hypomethylated sequences in blood

(FDR < 0.05), 11,603 hypermethylated and 14,143 hypomethyl-

ated sequences in glial cells (FDR < 0.05), and 5171 hyper-

methylated and 2380 hypomethylated sequences in neural cells

(FDR < 0.05) (Supplemental Fig. S2; Supplemental Tables 4, 5). As

in MSCs, hypomethylated cytosines in the differentiated cells

preferentially occurred at both non-CGI regions (x2 test; blood, P <

0.001, OR = 2.35; neural, P < 0.001, OR = 1.74; glial, P < 0.001, OR =

3.03) and at intragenic regions (x2 test; blood, P < 0.001, OR = 1.11;

neural, P < 0.001, OR = 2; glial, P < 0.001, OR = 1.89) (Supplemental

Fig. S2). However, in brain samples (neuronal and glial cells),

hypermethylated cytosines occurred preferentially at both non-

CGI regions (x2 test; neural, P < 0.001, OR = 1.43; glial, P < 0.001,

OR = 1.43) and at intragenic regions (x2 test; neural, P < 0.001, OR =

1.1; glial, P < 0.001, OR = 1.1), while they occurred preferentially in

both CGIs (x2 test; P < 0.001, OR = 3.5) and at promoter regions (x2

test; P < 0.001, OR = 1.49) in blood samples (Supplemental Fig. S2).

To identify possible cell type–independent DNAmethylation

signatures of aging, we created two additional data sets containing

the hyper- and hypomethylated probes from selected subsets of

the different tissues analyzed (Fig. 1F). This approach showed only

a small overlap between MSCs and differentiated cells (42 hypo-

methylated and 38 hypermethylated), suggesting that systemic

DNA methylation changes during aging are restricted to specific

regions of the genome (Fig. 1F; Supplemental Tables 6, 7).

Hypermethylated CpG sites during aging are associated
with repressive chromatin marks

In blood, DNA hypermethylation during aging has been shown to

occur at gene promoters enriched in repressive histonemarks such

as H3K9me3 and H3K27me3 (Rakyan et al. 2010). To identify pos-

sible chromatin signatures associated with DNA hypermethylation

during aging in adult MSCs, we compared our methylation data

with previously published data on a range of histone modifications

and chromatin modifiers in 10 different cell types obtained from

healthy individuals (see Methods). In the present study, we found

statistically significant associations with the repressive histone

marks H3K9me3, H3K27me3, and EZH2 in most differentiated

ENCODE cell lines (Fisher’s exact test; P < 0.001) (Fig.2), which is in

line with previously published data (Rakyan et al. 2010). To de-

termine whether these observations can be extrapolated to other

cell types, we used the same approach to analyze the CpG sites that

are hypermethylated during aging in blood, neural, and glial cells

(Supplemental Table 4;Guintivano et al. 2013;Hannumet al. 2013).

The results showed that hypermethylated CpG sites in blood and

brain were enriched in the same chromatin marks identified in the

adult MSCs (Fig. 2), suggesting that chromatin context is an im-

portant cell type–independent mark of DNA hypermethylation

during aging. Analysis of the 38 commonly hypermethylated CpG

sites in blood, MSCs, and neural and glial cells also showed statis-

tically significant associations (FDR < 0.05) with the repressive his-

tone marks H3K9me3, H3K27me3, and EZH2 found in some types

of differentiated cells (Fig. 2).

DNA hypomethylation during aging preferentially occurs
at H3K4me1-rich sites

To identify chromatin marks associated with CpG sites hypo-

methylated in agedMSCs, we aligned the DNA sequences identified

in our study with the same database of histone modifications and

chromatin modifiers described in the previous section. Of note is

the fact that hypomethylation largely occurred at regions occu-

pied by the active histone mark H3K4me1 in most of the

ENCODE cell lines (FDR < 0.05) (Fig. 2).

To determine whether these associations occurred in dif-

ferentiated cells, we used the same approach to analyze CpG

hypomethylation during aging in blood, neural, and glial cells

(Supplemental Table 5; Guintivano et al. 2013; Hannum et al.

2013). Blood and brain samples showed similar enrichment patterns

to those of the MSCs in that hypomethylated CpG sites were pref-

erentially located at regions enriched in H3K4me1 (Fig. 2). Inter-

estingly, the analysis of the 42 commonly hypomethylated CpG sites

in blood, MSCs, and neural and glial cells only showed statistically

significant associations with H3K4me1 (FDR < 0.05) (Fig. 2A).

Dynamics of interindividual DNA methylation variability
during aging

As in most previous studies on DNA methylation and aging, our

analytical design allowed the identification of DNA sequences

showing a specific tendency to change (hyper- or hypomethylation)

during aging, but not other putative DNA regions exhibiting no

change tendency (i.e., sequences that do not become hyper- or

hypomethylated with aging but rather show an increase or a de-

crease in interindividual variability). To address this issue, we carried

out an alternative data analysis on our MSCs based on the aging-

dependent behavior of interindividual variability (i.e., DNA meth-

ylation scedasticity). Interindividual variability was higher in MSCs

obtained from older individuals than in those obtained from

younger individuals (Fig. 3A). Analysis of the scedasticity identified

16,243 heteroscedastic CpG sites, of which 2437 were convergent

and 13,806 were divergent. We also identified 124,611 homosce-

dastic CpG sites, 68,927 showing low interindividual variability in

both young and old individuals (LV) and 55,684 showing high in-

terindividual variation in both populations (HV) (seeMethods) (Fig.

3B,C; Supplemental Tables 8–11).

We studied these sequences from a functional genomics

standpoint to identify factors associated with the behavior of DNA

methylation changes during aging. We observed that divergent

and HV CpG sites were preferentially enriched in non-CGIs (x2

test; P < 0.001, OR = 1.59 and P < 0.001, OR = 1.58, respectively),

and convergent and LV CpG sites in CGIs (x2 test; P < 0.001, OR =

1.11 and P < 0.001, OR = 5.00, respectively) (Fig. 3D). Both di-

vergent and convergent sequences were more abundant in in-

tragenic regions (x2 test; P < 0.001, OR = 1.38 and P < 0.001, OR =

1.16, respectively), with HV being more frequently found in

intergenic regions (x2 test; P < 0.001, OR = 1.50) and LV in pro-

moter regions (x2 test; P < 0.001, OR = 3.62) (Fig. 3D).

To determine whether scedasticity behavior can also identify

DNA methylation changes during aging in differentiated cells, we

repeated these same analyses on previously published blood DNA

methylation data (Hannum et al. 2013). As the cohort of Hannum

et al. (2013) contains DNA methylation data on more than 600

individuals, statistical analyses were carried out using a Brown-

Forsythe test (see Methods). To discount a possible confounding

effect of cell heterogeneity in the analysis of the scedasticity in

blood, in addition to applying the algorithmdescribed byHouseman

et al. (2012), we carried out in silico functional analysis of the

groups of genes established according to the behavior of the vari-

ance (see Methods). These analyses showed no significant associ-

ations between these groups of genes and any of the blood cell

Fern�andez et al.
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lineages examined (Supplemental Tables 12, 13). As in MSCs, in-

terindividual variability was higher in blood obtained from older

individuals than in blood obtained from younger individuals (Fig.

4A). Furthermore, in line with the findings for adult MSCs, in dif-

ferentiated cells the analyses identified 19,454 heteroscedastic CpG

sites, of which 4037 were convergent and 15,417 divergent. Of the

homoscedastic CpG sites, 92,074 showed LV in both young and old

individuals and 92,753 showed HV in both populations (Fig. 4B,C).

The role of genetic factors on DNA methylation changes
during aging

To study the role of genetic factors on DNA methylation changes

during aging, we used the HumanMethylation450 BeadChip to

analyze theDNAmethylation status of 24monozygotic twins from

two age groups (young, 21–22 yr; and old, 58–66 yr). The effect of

genotype was assessed comparing the Euclidean distance (ED) and

the interindividual variability in methylation values between old

and young monozygotic (MZ) pairs. To reduce possible bias due to

cell heterogeneity, DNA methylation data were corrected with the

algorithm described by Houseman et al. (2012). As in the larger

cohort previously analyzed (Fig. 4), interindividual DNA methyl-

ation variability substantially increased during aging in the MZ

twins (Fig. 5A). Interestingly, mean ED between MZ twins also

increased (more than twofold) with age in 46,763 CpG sites (Fig.

5B; Supplemental Table 14), which indicates that at these CpG

sites, the increase in interindividual methylation variability de-

pends, at least in part, on nongenetic factors. In 24,782 of these

sequences (Fig. 5B; Supplemental Table 15), the increase in ED

(more than twofold) was higher than could be accounted for solely

by interindividual variability, suggesting that in these CpG sites,

genetic factors play a less important role in the regulation of DNA

methylation changes during aging. However, in 21,908 of these

sequences (Fig. 5B; Supplemental Table 16), the increase in ED

(more than twofold) was less than could be accounted for solely by

interindividual variability, which suggests that, in contrast, at

these CpG sites genetic factors are more relevant for the regulation

of DNA methylation during aging.

Although the general trendwas an increase in EDwith age, ED

between older MZ pairs decreased (more than twofold) for 22,542

Figure 2. Chromatin signatures associated with DNA methylation changes during aging. (A) Heatmaps showing significant enrichment of hyper- and
hypomethylated CpG sites—identified in MSCs, blood, neurons, and glia—with different histone marks and chromatin modifiers contained in the UCSC
Genome Browser Broad histone track from the ENCODE Project. Color code indicates the significant enrichment based on log2 odds ratio (OR). (B) Circular
representation of three representative chromosomes (1, 6, and 17), indicating whether the CpGs were hypermethylated (red) or hypomethylated (blue)
during MSC aging. Inner tracks display chromatin marks (H3K4me1, H3K9me3, H3K27me3, and EZH2) generated for HUVEC cells and associated with
differentially methylated regions during aging. Broad histone peak information was averaged in 200-kbp genomic windows and represented as histogram
tracks. Three examples of hypo- and hypermethylated DNA regions associated with specific chromatin signatures are displayed below.

Epigenetic signatures of aging
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CpG sites (Fig. 5B; Supplemental Table 17). As the EDs between

older MZ individuals are greater than those between younger MZs

in more than half the sequences identified, our results support the

notion that, in general, DNA methylation patterns diverge with

age, even in genetically identical individuals. In 11,624 sequences

(Fig. 5B; Supplemental Table 18), the decrease in ED (more than

twofold) was lower than could be accounted for solely by in-

terindividual variability, which suggests that in these CpG sites,

genetic factors play amore important role in the regulation ofDNA

methylation changes during aging. In 10,883 sequences (Fig. 5B;

Supplemental Table 19), the decrease in ED was higher than could

be accounted for solely by interindividual variability, indicating

that in these CpG sites, genetic factors play a less important role in

the regulation of DNAmethylation during aging. As in the analysis

of the previously published blood DNAmethylation data, in silico

functional analysis of the groups of genes identified in the

monozygotic twins (Supplemental Tables 20, 21) suggested that,

after correcting with the Houseman algorithm, cell heterogeneity

had little impact on the Euclidean distances for changes in DNA

methylation with age.

Comparative analysis of the interindividual variation and the

EDs suggests that the effect of genotype on the regulation of DNA

Figure 3. Interindividual DNAmethylation variability duringMSC aging. (A) Density plot for CpG sites showing significant changes in variance in young
and oldMSCs. (B) Bar plot showing the number of age-dependent heteroscedastic (convergent and divergent) and homoscedastic (high [HV] and low [LV]
variability) CpG sites in MSCs. (C ) Box plots showing the classification of CpG sites into different groups based on the aging-dependent behavior of the
interindividual variability. Representative examples of CpG sites for each group are shown below (mvalue: relative methylation values). (D) Distribution of
homoscedastic and heteroscedastic CpGs relative to CpG island status and relative distribution across different genomic regions.
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methylation changes during aging was locus-specific. Thus, to

identify those DNA regions differentially affected by the genotype,

we used Circos representations to study the genomic distribution

of CpG sites that showed changes in ED with age (Fig. 5C). The

results demonstrated that while CpG sites

showing a decrease, or no difference, in

ED between young and oldMZs presented

a random distribution, those showing

an age-dependent increase in ED were

strongly enriched in subtelomeric DNA

regions. The greatest changes occurred at

Chromosomes 11 and 19, and in general,

clustering occurred at the same genomic

regions in both young and old twins.

To study the effect of the geno-

type on DNA methylation and its in-

terindividual variability during aging,

we analyzed the twins’ data using

similar strategies to those described in

previous sections, identifying 41,987

hypermethylated, 56,923 hypomethyl-

ated, 1018 convergent, 1635 divergent,

58,680 HV, and 59,795 LV CpG sites

(data not shown). The comparison of EDs

between young and oldMZpairs for these

groups of genes showed that the effect of

genotype depended on the tendency and

the scedasticity of the change (Fig. 5D).

ED increased (more than twofold) with age in 9.5% of the

hypomethylated and in 14% of the hypermethylated CpGs, sug-

gesting that genetic factors have a greater effect on the former

during aging (Fig. 5D; Supplemental Tables 22, 23). ED increased

Figure 4. Interindividual DNA methylation variability during aging of blood cells. (A) Density plot for
CpG sites showing significant changes of variance in young and old individuals. (B) Bar plot showing the
number of age-dependent heteroscedastic (convergent and divergent) and homoscedastic (high [HV]
and low [LV] variability) CpG sites. (C ) Box plots showing the classification of the CpG sites in different
groups based on the aging-dependent behavior of the interindividual variability.

Figure 5. Role of genetic factors in interindividual DNA methylation variability during aging. (A) Density plot for CpG sites showing significant changes
of methylation variance in the blood cells of MZ twins during aging. (B) Density plot for comparison between the mean Euclidean distance (d) and the
interindividual variability (s2) in methylation values between old and young MZ twins. The horizontal dotted lines represent a twofold change in the d
between MZ twins. (C ) Circular representation of genome-wide CpG sites showing differences in the �d between methylation values of young and old MZ
twins. d was averaged using a 2-Mbp window size. Inner tracks show genomic regions where the �d was higher (blue region) or lower (green region) in
old compared with youngMZ twins. (D) Density plots for comparison between the �d and the s2 in methylation values between old and youngMZ twins,
in hypermethylated, hypomethylated, heteroscedastic, and homoscedastic CpGs.

Epigenetic signatures of aging
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more than twofold) in most (83.73%) of the divergent CpG sites

and decreased more than twofold) in most (66.7%) of the con-

vergent CpG sites (Fig. 5D; Supplemental Tables 24, 25). How-

ever, changes in interindividual variability were higher than the

increase or decrease in ED (Fig. 5D), which indicates that genetic

factors play a role in the regulation of DNA methylation of these

DNA regions during aging. Interestingly, ED also increased in

most of the HV and LV sequences more than twofold during

aging (Fig. 5D). Furthermore, in most CpG sites, the increase in

ED between the MZ twins was higher than the interindividual

variability changes during aging (Fig. 5D), suggesting that ge-

notype has little effect on epigenetic drift in homoscedastic DNA

regions.

Discussion
Recent studies have shown that DNAmethylation is altered during

aging in a number of differentiated cell types (Rakyan et al. 2010;

Teschendorff et al. 2010; Bell et al. 2012; Fernandez et al. 2012;

Heyn et al. 2012; Numata et al. 2012; Guintivano et al. 2013;

Hannum et al. 2013; Johansson et al. 2013). Here, we studied the

dynamics and the context of DNA methylation changes during

aging in human adult stemcells as theyhave beenproposed to play

an important role in aging (Sharpless and DePinho 2004). Indeed,

a recent study in mice showed that epigenomic alterations of the

DNA methylation landscape contribute to the functional decline

of hematopoietic stem cells (HSCs) during aging (Beerman et al.

2013). To analyze our DNA methylation data, we first used an

analytical strategy similar to that used in most of the previous

studies on DNAmethylation and aging (i.e., linear models). Using

this approach, we identified 18,735 CpG sites that were hyper-

methylated and 45,407 that were hypomethylated during aging in

MSCs, which provides support for the idea that, as in blood (Heyn

et al. 2012), aging is associated with global DNA hypomethylation

in MSCs. In addition, we validated five of the genes identified

through themethylation arrays (HAND2, SIX2, TBX15, PITX2, and

HOXA11) by bisulfite pyrosequencing, using an independent

sample set of 46 MSCs obtained from individuals from 7 mo to 80

yr old. The results corroborated the data obtained from the

methylation arrays and suggest that our genome-wide data can be

extrapolated to independent sample sets of MSCs. HAND2 and

SIX2 genes, which code for transcription factors, have also been

found hypermethylated in several cancer types (Rauch et al. 2006;

Tong et al. 2010; Jones et al. 2013). In contrast, the genes that are

hypomethylated duringMSC aging—TBX15, PITX2, andHOXA11—

code for transcription factors involved in several differentiation and

developmental processes (Singh et al. 2005; Gross et al. 2012; Gage

et al. 2014).

Interestingly, 80 of the differentially methylated sequences

identified in the MSCs were present in both blood and brain,

which is in line with previous observations that suggest the exis-

tence of systemic DNAmethylation changes during aging (Rakyan

et al. 2010; Heyn et al. 2012). However, because many of the se-

quences were not common to different tissues, our data indicate

that as has recently been proposed (Christensen et al. 2009; Day

et al. 2013), systemic changes are restricted to specific loci, and cell

type plays an important role in the regulation of DNAmethylation

changes over time.

The factors determining the behavior of DNA methylation

during aging have received much attention during the last few

years. Recent works have shown that genes that are hyper-

methylated in blood during aging are associated with the presence

of bivalent chromatin domains in embryonic stem cells (Rakyan

et al. 2010; Teschendorff et al. 2010; Fernandez et al. 2012; Heyn

et al. 2012) and with repressive histone marks (H3K27me3/

H3K9me3) in differentiated cells (Rakyan et al. 2010). Our data

indicate that the same repressive histone marks in differentiated

cells are also present in sequences in those MSCs that are hyper-

methylated during aging, implying that, independent of mor-

phogenic potential and/or cell type, these repressive histonemarks

are associated with DNA methylation gain during aging. Of note,

our data provide new evidence that sequences that are hypo-

methylated in MSCs and differentiated cells during aging are

strongly enriched in the active chromatin mark H3K4me1, which

suggests that this histone modification is a cell type–independent

chromatin signature of DNA hypomethylation during aging. In-

terestingly, H3K4me1 has recently been associated with enhancers

(Rada-Iglesias et al. 2010), genomic regions that play a fundamen-

tal role in cis-regulation of gene function. In addition, a recent

study has shown that DNA hypomethylation within specific

transposable elements is associated with tissue-specific enhancer

marks, including H3K4me1, suggesting that these sequences

might play an important role in tissue-specific epigenetic gene

regulation (Xie et al. 2013), which implies that H3K4me1-associ-

atedDNAhypomethylation could play a role in the deregulation of

gene expression during aging (Bahar et al. 2006). Further parallel

studies analyzing DNA hypomethylation in enhancers and gene

expression during aging should shed light on this matter. Collec-

tively, our data indicate that although there are few altered DNA

sequences which are common to different cell types, the chromatin

signatures associated with DNA hyper- and hypomethylation dur-

ing aging were similar for different tissues, supporting the notion

that chromatin context is associated with the dynamics of systemic

DNA methylation changes during aging. The reasons why the

repressive histone marks H3K27me3/H3K9me3 favor hyper-

methylation and the active histone mark H3K4me1 promotes

hypomethylation during aging are not known. A simple explana-

tion could be the preferential location of DNA methyltransferases

(DNMTs) at repressive chromatin regions (Jeong et al. 2009). Re-

pressive chromatin regions could be predisposed to becoming

hypermethylated due to the abundance of DNMTs. In contrast,

active chromatin regions would be more susceptible to losing

methylation because the low levels of DNMTs at these regionsmake

it more difficult to maintain DNA methylation patterns after mi-

tosis. This possibility is supported by the fact that post-mitotic tis-

sues such as brain (Numata et al. 2012; Guintivano et al. 2013) and

muscle (Zykovich et al. 2014) present far fewer hypomethylated

sequences during aging than do highly mitotic cells such as blood

and MSCs. Further studies analyzing the genome-wide distribution

of DNMTs during aging are needed to support this possibility.

One possible limitation of our study is the purification and

the in vitro culture of MSCs (Calvanese et al. 2008; Choi et al.

2012), although this should haveno great impactwhen comparing

young and old MSCs as both sets of samples were cultured under

exactly the same conditions. Moreover, cell heterogeneity, which

is amajor issue inDNAmethylation studies (Houseman et al. 2012;

Guintivano et al. 2013), has less impact in relation to MSCs be-

cause they are more homogeneous than blood cell populations.

However, to minimize the impact of cell heterogeneity in our

analysis of blood, we corrected DNA methylation data with a re-

cently published algorithm (Houseman et al. 2012), which yielded

slightly different sequences to those previously proposed, sug-

gesting that some of the DNA changes previously identified might

be cell-type dependent. However, as this algorithm considers only
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the major cell subtypes, possible variations driven by minor sub-

types would not be detected. Another limitation of our study is that

the differences in the number of individuals analyzed and different

data analyses undertakenmake the interpretationof the comparison

of age-dependent DNA methylation changes in different cell types

difficult. However, the conserved pattern of chromatin signatures in

stem and differentiated cells suggests that H3K9me3/H3K27me3

and H3K4me1 are truly tissue-independent histone marks of DNA

hyper- and hypomethylation, respectively, during aging.

As in most previous studies on DNA methylation and aging,

CpG sites showing DNA methylation changes during lifetime as-

sociated with a specific tendency (i.e., hyper- or hypomethylation)

were identified. However, using this analytical approachmeans that

other possible changes occurring at CpG sites displaying high in-

terindividual variability in both young and old individuals and/or

age-dependent interindividual variability are overlooked. To address

this issue, we reanalyzed the DNA methylation data to characterize

the age-dependent interindividual variability (i.e., scedasticity).

Using this approach, we identified 16,243 heteroscedastic

(2437 convergent and 13,806 divergent) and 55,684 homosce-

dastic CpG sites with high (HV) and 68,927 with low (LV) inter-

individual variability. Most of these CpG sites were not identified

through linear model analysis, leading us to suggest that DNA

methylation changes during aging might be more frequent than

has previously been thought. Interestingly, although there were

some CpG sites that converged during aging, most of the hetero-

scedastic changeswere divergent, providing support for the notion

that interindividual DNA methylation variability increases during

lifetime (Gemma et al. 2013; Ong and Holbrook 2013). Although

the behavior of adult stem cell populations during aging is still

poorly understood (Pollina and Brunet 2011), the clonal ex-

pansion or decline of specific cell populations could affect the

interpretation of changes of interindividual DNA methylation

variability with aging. As it has been proposed that the number of

MSCs declines with age (Stolzing et al. 2008), it is possible that the

increase in interindividual variability might in fact be even larger

than was observed in our study.

Functional genomics analyses of the groups of CpG sites

established according to the behavior of the variance revealed that

low variable CpG sites were enriched in CGIs and gene promoters.

AsDNAmethylation occurring at CGI promoters has been proposed

to play an important role in gene regulation (Bird 1986; Bird and

Wolffe 1999; Calvanese et al. 2012), our results could indicate that

the DNA methylation involved in gene regulation is protected

against the stochastic epigenetic changes that occur during lifetime

(Feil and Fraga 2012). Interestingly, analysis of the interindividual

variability of DNAmethylation during aging in blood, showed that,

as in adult stem cells, the DNA methylation patterns of differenti-

ated cells also diverge with age, thereby supporting the notion that

a systemic epigenetic drift occurs during the lifetime of higher

organisms (Feil and Fraga 2012; Issa 2014). To confirm that the se-

quences identified in blood after correcting with the Houseman al-

gorithm were not affected by cell heterogeneity, we carried out in

silico functional analysis to discard a possible blood cell lineage–

dependent regulation. The analyses showed no meaningful associ-

ations, which further supports our contention that after correcting

with the Houseman algorithm, cell heterogeneity had a minor im-

pact on our blood DNA methylation data.

Previous reports have demonstrated that genetic factors play

an important role in the regulation of DNA methylation during

aging (Heijmans et al. 2007; Coolen et al. 2011; Gertz et al. 2011;

Bell et al. 2012). To determine whether the effect of genotype is

different depending on the intrinsic behavior of the DNA changes

during aging at each specific CpG site, we analyzed the DNA

methylation status of MZ twins of different ages. The results

showed that interindividual variability increased with aging, in

agreement with the notion that epigenetic drift during lifetime

occurs even in genetically identical individuals (Fraga et al. 2005;

Wong et al. 2010; Pirazzini et al. 2012; Talens et al. 2012; van

Dongen et al. 2012). However, our results also showed that the

DNA methylation status of some CpG sites may converge during

lifetime. Specifically, the analysis of genetically identical in-

dividuals revealed that the effect of genotype depended on the

intrinsic behavior of the DNA methylation changes during aging.

For example, although the mechanisms underlying methylation

convergence are still largely unknown, our MZ data indicate that

genetic factors must be involved, at least in part, as the intrapair

changes were similar to, or even less than, the interindividual

variations. In addition, in contrast to the convergent and divergent

CpG sites, genotype seems to play a less important role in whether

the CpG sites display high or low interindividual variability, as

evidenced by the fact that the increase in ED in the homoscedastic

sequences for MZ twin pairs during aging was higher than the

differences explained by interindividual variability. Of particular

note is the finding that genotype had the lowest effect on the CpG

sites, displaying high interindividual variability in young and old

individuals, evidenced by the increase in ED in MZ twins during

aging being similar to or even higher than the increase in in-

terindividual variability. Our results indicate that these CpG sites,

which have received little attention until now,might be important

targets of environmental and/or stochastic epigenetic variation

during development and aging. Although we have reduced the

effect of cell heterogeneity and immune status over time (Allegretta

et al. 1990) by using the Houseman algorithm (Houseman et al.

2012) and performing several functional in silico analyses of the

groups of the genes showing age-related changes in ED, we cannot

completely discount a partial effect of these in our results.

Our data indicate that the differences in the effect of genotype

on DNA changes during lifetime depend largely on the genomic

region involved, which is in agreement with previously published

data (Wong et al. 2010). In line with this, the greatest DNA

methylation changes for MZs were clustered at subtelomeric DNA

regions, which suggests that the regulation of DNA methylation

at these sequences is largely independent of genetic factors.

Interestingly, subtelomeric DNA methylation has been shown

to be affected by environmental factors (SM Tajuddin, AF Amaral,

AF Fern�andez, S Chanock, DT Silverman, A Tard�on, A Carrato,

MGarc�ıa-Closas, BP Jackson, EG Tora~no, et al., unpubl.). It is worth

noting that although formost CpG sites the ED in young twinswas

lower than for older twins, they still clustered in the same sub-

telomeric regions, providing support for the previous proposal that

epigenetic drift starts early in life (Kaminsky et al. 2009; Ollikainen

et al. 2010;Wong et al. 2010; Martino et al. 2013) and accumulates

during lifetime at particular CpG sites that, for still unknown

reasons, evade the control of genetic factors (Fraga 2009).

Collectively, our results indicate that the dynamics of DNA

methylation during lifetime in humans is associated with a com-

plex mixture of factors. These include the DNA sequence itself,

tissue type, and, in particular, the chromatin context, where re-

pressive histone modifications such us H3K9me3 and H3K27me3

are related toDNAhypermethylation and,most notably, the active

histone mark H3K4me1 is related to DNA hypomethylation. Fi-

nally, depending on the locus, the changes appear to bemodulated

by genetic and/or external factors.
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Methods

Isolation and culture of MSCs
MSCs were purchased from Lonza (Verviers), Millipore (Billerica),
and Inbiobank or directly obtained from young and elderly do-
nors. After informed consent, bone marrow aspirates were
obtained from one group of patients, and from a second group,
bone scrapings were obtained following hip replacement surgery.
Mononuclear cells were isolated by Ficoll density centrifugation
(400 g, 25 min, 20°C) and washed twice by sedimentation with
phosphate buffer (300 g, 5 min), and the cells were resuspended in
MSCmedium (DMEMplus 10% FBS) and seeded into culture flasks
(Nunc) at 1.5 3 10�5 cells/cm2 and allowed to adhere for 24 h.
MSCs were then cultured (37C, 5% CO2) in MSC medium. DNA
methylation analyses were carried out at cell passages 4–6 (Sup-
plemental Table 1).

MZ twins’ samples

Genomic DNA from 24 samples from the Italian Twin Registry,
corresponding to 12 pairs of MZ twins, was extracted from buffy
coats following standard procedures. Two different age groups were
included for array-based DNA methylation profiling; one included
individuals between 21 and 22 yr old (‘‘young’’ MZ twins), and the
other individuals between 58 and 66 yr (‘‘old’’ MZ twins). The
sample distribution by gender was the same in both groups.

Genome-wide DNA methylation analysis with high-density
arrays

Microarray-based DNA methylation profiling was performed with
Illumina’s Infinium HumanMethylation450 BeadChip (Bibikova
et al. 2011). Bisulfite conversion of DNA was performed using the
EZ DNA methylation kit (Zymo Research) following the manu-
facturer’s procedures, with the modifications described in the
Infinium assay methylation protocol guide. Processed DNA sam-
ples were then hybridized to the BeadChip, following the Illumina
Infinium HD methylation protocol. Genotyping services were
provided by the Centro Nacional de Genotipado (CEGEN-ISCIII)
(www.cegen.org).

Data sets of blood and brain samples

DNA methylation data of blood (Hannum et al. 2013) and brain
(neuron and glia) (Guintivano et al. 2013) samples produced with
the HumanMethylation450 BeadChip were used to compare with
the results obtained in MSCs. DNA methylation b-value data were
downloaded from GEO accession numbers GSE40279 and
GSE41826. The data analysis workflow is outlined in Supplemental
Figure S1.

HumanMethylation450 BeadChip data preprocessing

IDAT files from the HumanMethylation450 BeadChip were pro-
cessed further using the R/Bioconductor package minfi (R package
version 1.7.15). In order to adjust for the different probe design
types present in the HumanMethylation450 BeadChip architec-
ture, red and green signals from the IDAT files were corrected using
the SWAN algorithm (Makismovic et al. 2012). No background
correction or control probe normalization was applied. Probes
where at least two samples had detection P-values > 0.01 were fil-
tered out. In accordance with the method of Du et al. (2010), both
beta-values andM-values were computed and employed across the
analysis pipeline.M-values were used for all the statistical analyses,
assuming homoscedasticity (with the exception of the blood het-

erogeneity adjustment), while beta-values weremostly used for the
intuitive interpretation and visualization of results.

Filtering confounding probes

Probes located in the X/Y chromosomes were removed from the
data set when differential methylation profiles were analyzed.
Probes that had been found to cohybridate with probes in the sex
chromosomes (Lemire et al. 2013) were also removed. We used the
information from the SNP137Common track from the UCSC Ge-
nome Browser (Sherry et al. 2001) in order to remove those probes
with an SNP located inside their 2-bp central region.

Batch effect correction

Multidimensional scaling (MDS) was employed to detect whether
there was any significant batch effect depending on the different
HumanMethylation450 BeadChip plates that comprised the ex-
periments.When there was, the ComBatmethod implemented in
the R/Bioconductor package sva (R package version 3.7.0) was
used to adjust the data sets accordingly, employing the variable
‘‘age’’ as the outcome of interest and the sample plate as a batch
covariate.

White blood cell heterogeneity adjustment

Methylation data for the blood and twins’ data sets were adjusted
for blood cell heterogeneity, with respect to the major cell sub-
types, using the method described in Houseman et al. (2012). In
order to feed this method, we used the original 27K database of
purified white blood cell subtypes included in the original imple-
mentation of the algorithm. The correction was performed on the
beta-values due to the fact that the 27K database was expressed
using those units.M-values were obtained from the corrected beta-
values for subsequent downstream analyses.

Detection of differentially methylated probes

For theMSC data set, the 34 samples were divided into two groups:
young (ages ranging from 2 to 22 yr) and old (ages between 61 and
92 yr). Similarly, samples in the twins’ data set were divided into
young (ages ranging from 21–22 yr) and old (age between 58 and
66 yr). For the neuron and glia data sets, the two groups were de-
fined by taking those individuals whose age was below the 33rd
percentile (young) and above the 66th percentile (old). Blood
samples were not divided into groups, and the age predictor was
used as a quantitative covariate. For theMSCs’, twins’, and neuron
and glia data sets, significant methylation of a probe was de-
termined by the moderated t-test implemented in the R/Bio-
conductor package limma (Smyth 2005). Probes in the blood data
set were tested with a linear regression. A linear model, with
methylation level as response and age as the only predictor, was
used on all the data sets. P-values were corrected for multiple testing
using the Benjamini-Hochberg method for controlling the false-
discovery rate (FDR). A significance level of 0.05 was employed to
determine differentially methylated probes. An additional thresh-
old of effect size was applied, meaning that only those probes with
the strongest differences between groups (the top 70%) were se-
lected. The application of this threshold is essential to remove those
differences prone to coming from technical artifacts, and conse-
quently, ensure a more biologically sound statistical data analysis
(Pan et al. 2005). Our threshold was adjusted according to the dif-
ferences inM-values between groups in the brain andMSC data sets
and the slope coefficients extracted from the blood data set linear
regression model.
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Analysis of variability trends

To analyze aging-dependent behavior of DNA interindividual
variability (i.e., DNA methylation scedasticity), two groups, cor-
responding to young (samples where age is below the 33rd per-
centile) and old (those where age is above the 66th percentile)
individuals, were selected for all the data sets. This separation al-
lows the method to focus on the global tendency of the variability
and to be less dependent on a fixed, underlying model. A Brown-
Forsythe test for the equality of variances was used to determine
which probes in the blood data set had significantly different
variability in methylation between the two groups. For the
remaining data sets, and due to the small number of available
samples and low statistical power for conducting a variance test,
a simple descriptive approach was used, labeling a probe as having
a significant difference in methylation variability when the abso-
lute value of the base-2 logarithm of the change of the variances
for the two groups was greater than threefold. We did not apply
any threshold of effect size for any of the data sets. For the blood
data set, P-values were corrected for multiple testing using FDR
(Benjamini-Hochberg method), and a significance level of 0.05
was used to determine which probes had a significant trend in var-
iability. Two special subsets of probes with no significant trends in
variability were generated: (1) HV (high variance), for those probes
with variance values above the 75th percentile of the whole set of
variances for both the young and old sample groups, and (2) LV
(low variance), generated with those probes where both young and
old variances were below the 25th percentile.

The in silico functional analysis and interpretation of the
groups of genes established according to the behavior of the vari-
ance in blood was performed using the Database for Annotation,
Visualization and Integrated Discovery (DAVID) and the ‘‘Gene
ontology’’ and ‘‘UP_TISSUE’’ categories (Dennis et al. 2003; Huang
et al. 2009).

Measuring intra- and interindividual distance

EDs between twins were computed for every probe in the original
twins’ data set using beta-values. In a simple scenario, the ED ac-
counts for the absolute difference between the beta-values of the
two siblings. Differences in distances were computed as the base-2
logarithmof the fold change between the average ED for the young
and old sample groups.

Histone enrichment analysis

In order to analyze the enrichment of a histone mark on a given
subset of probes, we used the information contained in the UCSC
Genome Browser Broad histone track from the ENCODE Project
(Supplemental Table 26; Rosenbloom et al. 2010, 2012). Histone
peak data for every histone modification and chromatin modifier
in hESCs and 10 different cell types obtained from healthy in-
dividuals were downloaded from the UCSCGenome Browser. Small
peaks were discarded when they were completely contained within
wider peaks. Following the ENCODE Broad histone methods de-
scription, discrete intervals of ChIP-seq fragment enrichment were
identified using Scripture, a scan statistics approach, under the as-
sumption of uniform background signal (http://genome.ucsc.edu//
cgi-bin/hgTrackUi?db=hg19&g=wgEncodeBroadHistone).

For each combination of cell line and mark, a 2 3 2 contin-
gency table was built to determine its association with the input
subset of probes. Probes in the array were classified according to
whether they belonged to the subset or not, and whether they
intersected with a significant Broad peak for the given combina-
tion of cell line and mark. A Fisher’s exact test was used to de-
termine if the given subset of probes was significantly enriched for

each combination of cell line andmark. P-values were corrected for
multiple testing using FDR (Benjamini-Hochberg method), and
a significance level of 0.05 was used to determine which probes
had significant enrichment. The base-2 logarithm of the odds ratio
was used as a measure of effect size.

Genomic region analysis

The probes in the microarray were assigned a genomic region
according to their position relative to the transcript information
extracted from the R/Bioconductor package TxDb.Hsapiens.UCSC.
hg19.knownGene (R package version 2.9.2). A probe was said to be
in a ‘‘promoter’’ region if it was located inside the first exon, the 59
UTR, or a region up to 2 kbp upstream of the transcription start site
(TSS) of any given transcript. Similarly, a probe was labeled as
‘‘intragenic’’ if it was inside any intron or any exon other than the
first. Intergenic probes were determined as those not falling into
either of the two previous categories. According to this definition,
a probe could be in both a promoter and an intragenic region at the
same time for different transcripts. A contingency table was built
for each selected subset of probes and a given genomic region, with
one variable indicating whether a given probe belonged or not to
the subset, and the other indicating whether a given probe was
labeled with the selected region. Significance of the association
was determined by a Pearson’s x2 test with Yates’ continuity cor-
rection. A significance level of 0.05 was used to determine whether
a subset was dependent with respect to a given genomic region. An
odds ratio was used as a measure of effect size.

CGI status analysis

The CGI locations used in the analyses were obtained from the
R/Bioconductor package FDb.InfiniumMethylation.hg19 (R package
version 1.0.1). The generation procedure of these CGIs is described
by Wu et al. (2010). ‘‘CpG shores’’ were defined as the 2-kbp re-
gions flanking a CGI. ‘‘CpG shelves’’ were defined as the 2-kbp
regions either upstream of or downstream from each CpG shore.
Probes not belonging to any of the regions thus far mentioned
were assigned to the special category ‘‘non-CGI.’’ Each probe was
assigned to only one of the categories. A 4 3 2 contingency table
was constructed for every subset of probes in order to study the
association between the given subset and the different CGI cate-
gories. A x2 test was used to determine if any of the categories had
a significant association with the given subset. For each of the CGI
status levels, a 23 2 contingency table was defined and another x2

test was used to independently evaluate the association of the
given subset with each status level, a significance level of 0.05
being employed for all tests. Effect size was reported as the odds
ratio for each of the individual tests.

Microarray background correction

Although it is sometimes referred to as a genome-wide solution,
the HumanMethylation450 BeadChip only covers a fraction of the
entire genome. In its 27K predecessor, the probes were mainly lo-
cated at gene promoter regions, while in addition to the promoter
probes, the HumanMethylation450 BeadChip includes probes lo-
cated inside genes and in intergenic regions (Dedeurwaerder et al.
2011).

The irregular distribution of probes can lead to unwanted
biases when studying whether a selected subset of probes is
enriched with respect to any functional or clinical mark. A refer-
ence to the background distribution of features was included in
every type of statistical test performed in order to prevent our
conclusions from being driven by the irregular distribution of
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probes. In qualitative tests (CGI status, genomic region, or histone
mark enrichment), the contingency matrix was built to represent
the background distribution of the microarray. Thus, any signifi-
cant result would indicate a departure from the fixed background
distribution and ignore any manufacturer bias.

Circos data track smoothing

In order to plot the CpG information on the Circos genome-wide
graphs (Krzywinski et al. 2009), smoothingwas applied to our data.
Broad histone peak information from the UCSC Genome Browser
was averaged by partitioning the genome into intervals of 200 kbp
and assigning to each a score corresponding to the average of
the Broad peak scores found within it. CpG locations were not
smoothed. Distances in the twins’ data set were averaged using a
2-Mbp window size.

Bisulfite pyrosequencing

DNAmethylation patterns of representative dmCpGs during aging
were analyzed by bisulfite pyrosequencing in an independent
sample set of 46 MSCs obtained from individuals of different ages
(Supplemental Table 1). Bisulfite modification of DNA was per-
formed with the EZ DNA methylation-gold kit (Zymo Research)
following the manufacturer’s instructions. The set of primers for
PCR amplification and sequencing were designed using the spe-
cific software PyroMark assay design (version 2.0.01.15). Primer
sequences were designed to hybridize with CpG free sites to ensure
methylation-independent amplification (Supplemental Table 27).
After PCR amplification of the region of interest with the specific
primers, pyrosequencing was performed using PyroMark Q24 re-
agents and a vacuum prep workstation, equipment, and software
(Qiagen). A linear regression model was fitted to the pyrose-
quencing methylation data using age as a predictor.

Data analysis workflow

All the necessary steps for upstream anddownstream analyseswere
defined and implemented using the Snakemake tool (K€oster and
Rahmann 2012). This tool helps data scientists to generate a re-
producible and inherently parallel processing pipeline. The source
code of the workflow is included as Supplemental Material.

Data access
The HumanMethylation450 BeadChip data sets from this study
have been submitted to the NCBI Gene Expression Omnibus
(GEO; http://www.ncbi.nlm.nih.gov/geo/) under accession num-
ber GSE52114 (subseries GSE52112 and GSE52113).
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