4 research outputs found
Recommended from our members
Spatial proteomics revealed a CX3CL1-dependent crosstalk between the urothelium and relocated macrophages through IL-6 during an acute bacterial infection in the urinary bladder
The urothelium of the urinary bladder represents the first line of defense. However, uropathogenic E. coli (UPEC) damage the urothelium and cause acute bacterial infection. Here, we demonstrate the crosstalk between macrophages and the urothelium stimulating macrophage migration into the urothelium. Using spatial proteomics by MALDI-MSI and LC-MS/MS, a novel algorithm revealed the spatial activation and migration of macrophages. Analysis of the spatial proteome unravelled the coexpression of Myo9b and F4/80 in the infected urothelium, indicating that macrophages have entered the urothelium upon infection. Immunofluorescence microscopy additionally indicated that intraurothelial macrophages phagocytosed UPEC and eliminated neutrophils. Further analysis of the spatial proteome by MALDI-MSI showed strong expression of IL-6 in the urothelium and local inhibition of this molecule reduced macrophage migration into the urothelium and aggravated the infection. After IL-6 inhibition, the expression of matrix metalloproteinases and chemokines, such as CX3CL1 was reduced in the urothelium. Accordingly, macrophage migration into the urothelium was diminished in the absence of CX3CL1 signaling in Cx3cr1gfp/gfp mice. Conclusively, this study describes the crosstalk between the infected urothelium and macrophages through IL-6-induced CX3CL1 expression. Such crosstalk facilitates the relocation of macrophages into the urothelium and reduces bacterial burden in the urinary bladder. © 2020, The Author(s)
Star-Shaped Drug Carriers for Doxorubicin with POEGMA and POEtOxMA Brush-like Shells: A Structural, Physical, and Biological Comparison
The
synthesis of amphiphilic star-shaped poly(ε-caprolactone)-<i>block</i>-poly(oligo(ethylene glycol)methacrylate)s ([PCL<sub>18</sub>-<i>b</i>-POEGMA]<sub>4</sub>) and poly(ε-caprolactone)-<i>block</i>-poly(oligo(2-ethyl-2-oxazoline)methacrylate)s ([PCL<sub>18</sub>-<i>b</i>-POEtOxMA]<sub>4</sub>) is presented.
Unimolecular behavior in aqueous systems is observed with the tendency
to form loose aggregates for both hydrophilic shell types. The comparison
of OEGMA and OEtOxMA reveals that the molar mass of the macromonomer
in the hydrophilic shell rather than the mere length is the crucial
factor to form an efficiently stabilizing hydrophilic shell. A hydrophilic/lipophilic
balance of 0.8 is shown to stabilize unimolecular micelles in water.
An extensive in vitro biological evaluation shows neither blood nor
cytotoxicity. The applicability of the polymers as drug delivery systems
was proven by the encapsulation of the anticancer drug doxorubicin,
whose cytotoxic effect was retarded in comparison to the free drug