689 research outputs found

    F1: An Eight Channel Time-to-Digital Converter Chip for High Rate Experiments

    Get PDF
    A new TDC chip has been developed for the COMPASS experiment at CERN. The resulting ASIC offers an unprecedented degree of flexibility and functionality. Its capability to handle highest hit and trigger input rates as well as its low power consumption makes it an ideal tool for future collider and fixed target experiments. First front-end boards equipped with the F1 chip have been used recently at testbeam experiments at CERN. A functional description and specification for this new TDC chip is presented.A new TDC chip has been developed for the COMPASS experiment at CERN. The resulting ASIC offers an unprecedented degree of flexibility and functionality. Its capability to handle highest hit and trigger input rates as well as its low power consumption makes it an ideal tool for future collider and fixed target experiments. First front-end boards equipped with the F1 chip have been used recently at testbeam experiments at CERN. A functional description and specification for this new TDC chip is presented

    Cluster Interpretation of Properties of Alternating Parity Bands in Heavy Nuclei

    Full text link
    The properties of the states of the alternating parity bands in actinides, Ba, Ce and Nd isotopes are analyzed within a cluster model. The model is based on the assumption that cluster type shapes are produced by the collective motion of the nuclear system in the mass asymmetry coordinate. The calculated spin dependences of the parity splitting and of the electric multipole transition moments are in agreement with the experimental data.Comment: 29 pages, 10 figure

    Nonlinear electrodynamics and CMB polarization

    Full text link
    Recently WMAP and BOOMERanG experiments have set stringent constraints on the polarization angle of photons propagating in an expanding universe: Δα=(−2.4±1.9)∘\Delta \alpha = (-2.4 \pm 1.9)^\circ. The polarization of the Cosmic Microwave Background radiation (CMB) is reviewed in the context of nonlinear electrodynamics (NLED). We compute the polarization angle of photons propagating in a cosmological background with planar symmetry. For this purpose, we use the Pagels-Tomboulis (PT) Lagrangian density describing NLED, which has the form L∌(X/Λ4)ή−1  XL\sim (X/\Lambda^4)^{\delta - 1}\; X , where X=1/4FαÎČFαÎČX=1/4 F_{\alpha\beta} F^{\alpha \beta}, and ÎŽ\delta the parameter featuring the non-Maxwellian character of the PT nonlinear description of the electromagnetic interaction. After looking at the polarization components in the plane orthogonal to the (xx)-direction of propagation of the CMB photons, the polarization angle is defined in terms of the eccentricity of the universe, a geometrical property whose evolution on cosmic time (from the last scattering surface to the present) is constrained by the strength of magnetic fields over extragalactic distances.Comment: 17 pages, 2 figures, minor changes, references adde

    Cre-dependent DREADD (Designer Receptors Exclusively Activated by Designer Drugs) mice: Conditional DREADD Mice

    Get PDF
    DREADDs, designer receptors exclusively activated by designer drugs, are engineered G protein-coupled receptors (GPCR) which can precisely control GPCR signaling pathways (for example, Gq, Gs and Gi). This chemogenetic technology for control of GPCR signaling has been successfully applied in a variety of in vivo studies, including in mice, to remotely control GPCR signaling, for example, in neurons, glia cells, pancreatic beta-cells, or cancer cells. In order to fully explore the in vivo applications of the DREADD technology we generated hM3Dq and hM4Di strains of mice which allow for Cre recombinase-mediated restricted expression of these pathway-selective DREADDs. With the many Cre driver lines now available, these DREADD lines will be applicable to studying a wide array of research and preclinical questions

    SU(3) Predictions for Weak Decays of Doubly Heavy Baryons -- including SU(3) breaking terms

    Get PDF
    We find expressions for the weak decay amplitudes of baryons containing two b quarks (or one b and one c quark -- many relationship are the same) in terms of unknown reduced matrix elements. This project was originally motivated by the request of the FNAL Run II b Physics Workshop organizers for a guide to experimentalists in their search for as yet unobserved hadrons. We include an analysis of linear SU(3) breaking terms in addition to relationships generated by unbroken SU(3) symmetry, and relate these to expressions in terms of the complete set of possible reduced matrix elements.Comment: 49 page

    Quantum Computing and Quantum Simulation with Group-II Atoms

    Full text link
    Recent experimental progress in controlling neutral group-II atoms for optical clocks, and in the production of degenerate gases with group-II atoms has given rise to novel opportunities to address challenges in quantum computing and quantum simulation. In these systems, it is possible to encode qubits in nuclear spin states, which are decoupled from the electronic state in the 1^1S0_0 ground state and the long-lived 3^3P0_0 metastable state on the clock transition. This leads to quantum computing scenarios where qubits are stored in long lived nuclear spin states, while electronic states can be accessed independently, for cooling of the atoms, as well as manipulation and readout of the qubits. The high nuclear spin in some fermionic isotopes also offers opportunities for the encoding of multiple qubits on a single atom, as well as providing an opportunity for studying many-body physics in systems with a high spin symmetry. Here we review recent experimental and theoretical progress in these areas, and summarise the advantages and challenges for quantum computing and quantum simulation with group-II atoms.Comment: 11 pages, 7 figures, review for special issue of "Quantum Information Processing" on "Quantum Information with Neutral Particles

    A precision determination of the mass of the η\eta meson

    Full text link
    Several processes of meson production in proton-deuteron collisions have been measured simultaneously using a calibrated magnetic spectrograph. Among these processes, the η\eta meson is seen clearly as a sharp missing--mass peak on a slowly varying background in the p+d→3He+Xp+d\to ^3\textrm{He} +X reaction. Knowing the kinematics of the other reactions with well determined masses, it is possible to deduce a precise mass for the η\eta meson. The final result, m(η)=547.311±0.028(stat)±0.032(syst) MeV/c2m(\eta)=547.311\pm 0.028 \textrm{(stat)} \pm 0.032 \textrm{(syst) MeV/c}^2, is significantly lower than that found by the recent NA48 measurement, though it is consistent with values obtained in earlier counter experiments.Comment: 10 pages, 6 figures, Fig. 3 change

    Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory

    Get PDF
    Data from the Pierre Auger Observatory are analyzed to search for anisotropies near the direction of the Galactic Centre at EeV energies. The exposure of the surface array in this part of the sky is already significantly larger than that of the fore-runner experiments. Our results do not support previous findings of localized excesses in the AGASA and SUGAR data. We set an upper bound on a point-like flux of cosmic rays arriving from the Galactic Centre which excludes several scenarios predicting sources of EeV neutrons from Sagittarius AA. Also the events detected simultaneously by the surface and fluorescence detectors (the `hybrid' data set), which have better pointing accuracy but are less numerous than those of the surface array alone, do not show any significant localized excess from this direction.Comment: Matches published versio

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic
    • 

    corecore