956 research outputs found

    Highly photoluminescent copper carbene complexes based on prompt rather than delayed fluorescence

    Get PDF
    Linear two-coordinate copper complexes of cyclic (alkyl)(amino)-carbenes (CAAC)CuX (X = halide) show photoluminescence with solid-state quantum yields of up to 96%; in contrast to previously reported Cu photoemitters the emission is independent of temperature over the range T = 4 – 300 K and occurs very efficiently by prompt rather than delayed fluorescence, with lifetimes in the sub-nanosecond range

    Rational Design of TADF Polymers Using a Donor–Acceptor Monomer with Enhanced TADF Efficiency Induced by the Energy Alignment of Charge Transfer and Local Triplet Excited States

    Get PDF
    The photophysics of thermally activated delayed fluorescence (TADF) in phenothiazine-dibenzothiophene-S,S-dioxide (PTZ-DBTO2) molecule is investigated in detail. First, it is shown that the proximity of local triplet excited states (3LE), e.g., 3D or 3A, above or below the DA charge transfer states (CT) is crucial for the efficiency of the TADF mechanism in PTZ-DBTO2. This TADF emitter is then used as a monomer unit to design polymer materials with efficient TADF. The reverse intersystem crossing mechanism (RISC) that supports TADF is able to compete with internal conversion and triplet–triplet annihilation (TTA) in the polymer chains and generates efficient TADF emission in the polymer pristine films. Prototype devices with PTZ-DBTO2 dispersed in 4,4′-bis(N-carbazolyl)-2,2′-biphenyl (CBP) host give excellent performance with EQE of ≈22% at low luminance (<100 cd m−2), for 100 cd m−2 the EQE is 19.4%. In the case of solution processed devices, using the novel TADF polymers, the performance is much lower, EQE ≈3.5% at 100 cd m−2, which is still the highest value for a polymer TADF system at useful brightness, yet reported. This results from a combination of weak charge transport properties in these materials and device fabrication methods that require further improvement. Nevertheless, these results pave the way to explore TADF in polymer light emitting diodes (PLEDs), using less costly deposition methods, such as spin-coating and inkjet printing, which are more appropriate for large area deposition

    Dibenzo[a,j]phenazine-Cored Donor-Acceptor-Donor Compounds as Green-to-Red/NIR Thermally Activated Delayed Fluorescence Organic Light Emitters

    Get PDF
    A new family of thermally activated delayed fluorescence (TADF) emitters based on U-shaped D-A-D architecture with a novel accepting unit has been developed. All investigated compounds have small singlet-triplet energy splitting (E-ST) ranging from 0.02 to 0.20eV and showed efficient TADF properties. The lowest triplet state of the acceptor unit plays the key role in the TADF mechanism. OLEDs fabricated with these TADF emitters achieved excellent efficiencies up to 16% external quantum efficiency (EQE)

    Triplet Harvesting with a Simple Aromatic Carbonyl

    Get PDF
    The efficiency of organic light-emitting diodes crucially depends on triplet harvesters. These accept energy from triplet correlated electron hole pairs and convert it into light. Here, experimental evidence is given that simple aromatic carbonyls, such as thioxanthone, could serve this purpose. In these compounds, the emissive 1ππ* excitation may rapidly equilibrate with an upper triplet state (3nπ*). This equilibrium may persist for nanoseconds. Population of the 3nπ* state via energy transfer from an electron hole pair should result in fluorescence emission and thereby triplet harvesting. To demonstrate the effect, solutions of 1,4-dichlorobenzene (triplet sensitizer) and thioxanthone (harvester) were excited at 266 nm with a nanosecond laser. The emission decay reveals a 100 ns decay absent in the thioxanthone only sample. This matches predictions for an energy transfer limited by diffusion and gives clear evidence that thioxanthone can convert triplet excitations into light

    Design of Metal-Free Polymer Carbon Dots: A New Class of Room-Temperature Phosphorescent Materials.

    Get PDF
    Polymer carbon dots (PCDs) are proposed as a new class of room-temperature phosphorescence (RTP) materials. The abundant energy levels in PCDs increase the probability of intersystem crossing (ISC) and their covalently crosslinked framework structures greatly suppress the nonradiative transitions. The efficient methods allow the manufacture of PCDs with unique RTP properties in air without additional metal complexation or complicated matrix composition. They thus provide a route towards the rational design of metal-free RTP materials that may be synthesized easily. Furthermore, we find that RTP is associated with a crosslink-enhanced emission (CEE) effect, which provides further routes to design improved PCDs with diverse RTP performance. Our results show the potential of PCDs as a universal route to achieve effective metal-free RTP

    Room temperature triplet state spectroscopy of organic semiconductors

    Get PDF
    Organic light-emitting devices and solar cells are devices that create, manipulate, and convert excited states in organic semiconductors. It is crucial to characterize these excited states, or excitons, to optimize device performance in applications like displays and solar energy harvesting. This is complicated if the excited state is a triplet because the electronic transition is ‘dark’ with a vanishing oscillator strength. As a consequence, triplet state spectroscopy must usually be performed at cryogenic temperatures to reduce competition from non-radiative rates. Here, we control non-radiative rates by engineering a solid-state host matrix containing the target molecule, allowing the observation of phosphorescence at room temperature and alleviating constraints of cryogenic experiments. We test these techniques on a wide range of materials with functionalities spanning multi-exciton generation (singlet exciton fission), organic light emitting device host materials, and thermally activated delayed fluorescence type emitters. Control of non-radiative modes in the matrix surrounding a target molecule may also have broader applications in light-emitting and photovoltaic devices.United States. Dept. of Energy. Center for Excitonics (Award DE-SC0001088

    Liquid-crystalline TADF materials based on substituted carbazoles and terephthalonitrile

    Get PDF
    By functionalising 2,5-di(N,N′-carbazolyl)terephthalonitrile or 2,3,5,6-tetra(N,N′-carbazolyl)terephthalonitrile with alkoxy chains located on the carbazole moiety, a family of materials is realised, all of which show a TADF response and two of which are also liquid crystalline. This journal i
    corecore