37 research outputs found
Molecular Landscape of the Ribosome Pre-initiation Complex during mRNA Scanning: Structural Role for eIF3c and Its Control by eIF5
Citation: Obayashi, E., Luna, R. E., Nagata, T., Martin-Marcos, P., Hiraishi, H., Singh, C. R., . . . Asano, K. (2017). Molecular Landscape of the Ribosome Pre-initiation Complex during mRNA Scanning: Structural Role for eIF3c and Its Control by eIF5. Cell Reports, 18(11), 2651-2663. doi:10.1016/j.celrep.2017.02.052During eukaryotic translation initiation, eIF3 binds the solvent-accessible side of the 40S ribosome and recruits the gate-keeper protein eIF1 and eIF5 to the decoding center. This is largely mediated by the N-terminal domain (NTD) of eIF3c, which can be divided into three parts: 3c0, 3c1, and 3c2. The N-terminal part, 3c0, binds eIF5 strongly but only weakly to the ribosome-binding surface of eIF1, whereas 3c1 and 3c2 form a stoichiometric complex with eIF1. 3c1 contacts eIF1 through Arg-53 and Leu-96, while 3c2 faces 40S protein uS15/S13, to anchor eIF1 to the scanning pre-initiation complex (PIC). We propose that the 3c0:eIF1 interaction diminishes eIF1 binding to the 40S, whereas 3c0:eIF5 interaction stabilizes the scanning PIC by precluding this inhibitory interaction. Upon start codon recognition, interactions involving eIF5, and ultimately 3c0:eIF1 association, facilitate eIF1 release. Our results reveal intricate molecular interactions within the PIC, programmed for rapid scanning-arrest at the start codon
A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation
Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies
A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation.
Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies
Role of domains within the autotransporter Hbp/Tsh.
The autotransporter Tsh (temperature-sensitive haem-agglutinin) secreted by avian pathogenic Escherichia coli was reported in 1994 and the almost identical Hbp (haemoglobin protease) was discovered some years later in isolates from patients suffering from peritoneal abscesses. However, the function of the protein remains uncertain. The crystal structure of Hbp shows that the protein carries a serine protease domain (domain 1) and a small domain of 75 residues called domain 2 which is inserted into the long ÎČ-helix characteristic of autotransporter passenger proteins. In this paper, domain 1 is shown to bind calcium, although metal ions binding to this site do not seem to regulate protease activity. Tsh has been reported to bind red cells and components of the extracellular matrix, but it is demonstrated that these properties are not a consequence of the presence of domain 2. © 2010 International Union of Crystallography
New insights into allosteric mechanisms from trapping unstable protein conformations in silica gels
To understand why the classical two-state allosteric model of Monod, Wyman, and Changeux explains cooperative oxygen binding by hemoglobin but does not explain changes in oxygen affinity by allosteric inhibitors, we have investigated the kinetic properties of unstable conformations transiently trapped by encapsulation in silica gels. Conformational trapping reveals that after nanosecond photodissociation of carbon monoxide a large fraction of the subunits of the T quaternary structure has kinetic properties almost identical to those of subunits of the R quaternary structure. Addition of allosteric inhibitors reduces both the fraction of R-like subunits and the oxygen affinity of the T quaternary structure. These kinetic and equilibrium results are readily explained by a recently proposed generalization of the Monod-Wyman-Changeux model in which a preequilibrium between two functionally different tertiary, rather than quaternary, conformations plays the central role
The nature of the TRAPâAnti-TRAP complex
Tryptophan biosynthesis is subject to exquisite control in species of Bacillus and has become one of the best-studied model systems in gene regulation. The protein TRAP (trp RNA-binding attenuation protein) predominantly forms a ring-shaped 11-mer, which binds cognate RNA in the presence of tryptophan to suppress expression of the trp operon. TRAP is itself regulated by the protein Anti-TRAP, which binds to TRAP and prevents RNA binding. To date, the nature of this interaction has proved elusive. Here, we describe mass spectrometry and analytical centrifugation studies of the complex, and 2 crystal structures of the TRAPâAnti-TRAP complex. These crystal structures, both refined to 3.2-â« resolution, show that Anti-TRAP binds to TRAP as a trimer, sterically blocking RNA binding. Mass spectrometry shows that 11-mer TRAP may bind up to 5 AT trimers, and an artificial 12-mer TRAP may bind 6. Both forms of TRAP make the same interactions with Anti-TRAP. Crystallization of wild-type TRAP with Anti-TRAP selectively pulls the 12-mer TRAP form out of solution, so the crystal structure of wild-type TRAPâAnti-TRAP complex reflects a minor species from a mixed population
Sedimentation Velocity Methods for the Characterization of Protein Heterogeneity and Protein Affinity Interactions
International audienceSedimentation velocity analytical ultracentrifugation is a powerful and versatile tool for the characterization of proteins and macromolecular complexes in solution. The direct modeling of the sedimentation process using modern computational strategies allows among others to assess the homogeneity/heterogeneity state of protein samples and to characterize protein associations. In this chapter, we will provide theoretical backgrounds and protocols to analyze the size distribution of protein samples and to determine the affinity of protein-protein hetero-associations