950 research outputs found

    DiMIZA : a dispersion modeling based impact zone assessment of mercury (Hg) emissions from coal-fired power plants and risk evaluation for inhalation exposure

    Get PDF
    Coal-fired combined heat and power plants (CHPPs) serving large districts are among the major sources of mercury (Hg) emissions globally, including Central Asia. Most CHPPs reside on the outskirts of urban areas, thus creating risk zones. The impact of atmospheric Hg levels on health is complex to establish due to the site-specific nature of the relationship between CHPP emissions and hotspots (i.e., localized areas where Hg concentrations greatly exceed its background value). However, a methodological identification of "emission impact zones" for atmospheric Hg emissions from CHPPs with potential adverse public health outcomes has not yet been fully studied. The present work suggests an easy-to-use and cost-free impact zone identification method based on HYSPLIT dispersion modeling for atmospheric Hg emissions from CHPPs. The dispersion modeling based impact zone assessment, DiMIZA, merges short-term dispersion runs (e.g., hourly) into long-term emission impacts (e.g., yearly), which allows to identify the source impact zones. To perform a case study using the suggested method, a CHPP plant in Nur-Sultan (capital of Kazakhstan) was selected. First, traditional ad-hoc measurements were performed to identify the level of dispersions at ground level in different atmospheric stability characteristics. Then, HYSPLIT dispersion model was run for the same days and times of those particular periods when the field measurements were performed. The model results were evaluated via a comparison with the ground measurements and assessed for their atmospheric stability and diel conditions. Due to different emission loads in heating and non-heating periods, two separate pairs of impact zone maps were generated, and public Hg exposure health risks (acute and chronic) were assessed

    Human exposure to hydrogen sulphide concentrations near wastewater treatment plants

    Get PDF
    The hydrogen sulphide (H2S) levels from wastewater treatment plants (WWTPs) in Curitiba, Brazil have been quantified for the first time. H2S generated by anaerobic decomposition of organic matter in WWTPs is a cause for concern because it is an air pollutant, which can cause eye and respiratory irritation, headaches, and nausea. Considering the requirement for WWTPs in all communities, it is necessary to assess the concentrations and effects of gases such as H2S on populations living and/or working near WWTPs. The primary objective of this study was to evaluate the indoor and outdoor concentration of H2S in the neighbourhood of two WWTPs located in Curitiba, as well as its human health impacts. Between August 2013 and March 2014 eight sampling campaigns were performed using passive samplers and the analyses were carried out by spectrophotometry, presenting mean concentrations ranging from 0.14 to 32 μg m− 3. Eleven points at WWTP-A reported H2S average concentrations above the WHO recommendation of 10 μg m− 3, and 15 points above the US EPA guideline of 2 μg m− 3. At WWTP-B the H2S concentration was above US EPA guideline at all the sampling points. The I/O ratio on the different sampling sites showed accumulation of indoor H2S in some instances and result in exacerbating the exposure of the residents. The highest H2S concentrations were recorded during the summer in houses located closest to the sewage treatment stations, and towards the main wind direction, showing the importance of these factors when planning a WWTP. Lifetime risk assessments of hydrogen sulphide exposure showed a significant non-carcinogenic adverse health risk for local residents and workers, especially those close to anaerobic WWTPs. The data indicated that WWTPs operated under these conditions should be recognized as a significant air pollution source, putting local populations at risk

    Permeation of Herbicidal Dichlobenil From a Casoron Formulation Through Nitrile Gloves

    Get PDF
    The aim of this study was to measure permeation of the herbicide dichlobenil in Casoron 4G through disposable and chemically protective nitrile gloves using an American Society for Testing and Materials-type permeation cell and a closed-loop system employing two different solvents (hexane and water) and two different challenge situations (aqueous emulsion and solid formulation). Capillary gas chromatography–mass spectrometry was used for quantification purposes. The chemically protective glove did not allow any permeation up to 8 h for the solid-formulation and water-collection challenges, but permeation was detected in all other challenges. The disposable glove allowed the most permeation, and the solid-formulation challenge with water collection necessitated that a dichlobenil equivalent be calculated because of the presence of its hydrolysis degradation product 2,6-dichlorobenzamide. Permeation from the solid formulation was detectable by hexane collection for both the disposable and chemically protective gloves and by water collection for the disposable glove. It was concluded that hexane-solvent collection was not valid for the disposable glove at 4 and 8 h of permeation in the solid Casoron challenge or for the aqueous emulsion challenge at 8 h relative to the water-collection solvent data. The hexane-solvent collection for the chemically protective glove was valid for the 8-h solid-formulation challenge but not for the 8-h aqueous-solution challenge. All water-solvent collections were valid; however, dichlobenil usually permeated the gloves

    Accumulation, temporal variation, source apportionment and risk assessment of heavy metals in agricultural soils from the middle reaches of Fenhe River basin, North China

    Get PDF
    The Fenhe River basin is the main agricultural and industrial developed area in Shanxi province, China. In recent years, agricultural non-point source pollution in the Fenhe River basin intensified, threatening soil quality and safety in the area. Accumulation of eight heavy metals (HMs) including chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd), lead (Pb) and mercury (Hg) has been detected in soil samples from 50 agricultural sites (0-20 cm) from the middle reaches of the Fenhe River basin. The ecological and human health risk and potential sources of the eight HMs were investigated. In addition, the human health and ecological risks imposed by the possible sources of the eight HMs were quantitatively apportioned. The enrichment factor (EF) values of Cr, Ni, Cu, Pb and Zn were lower than 2, indicating minimal enrichment, while values for As, Cd and Hg were between 2 and 5, exhibiting moderate enrichment. Temporal variation analysis suggested that most HMs in the study area exhibited low concentrations after 2015, except As. The potential ecological risk index was 174.09, indicating low ecological risk. The total hazard index and cancer risk values were 0.395 and 5.35 x 10(-4) for adults and 2.75 and 3.63 x 10(-4) for children, indicating the accepted standard levels were exceeded for non-carcinogenic risk for children and carcinogenic risks for both adults and children. Four potential sources were identified: (1) natural sources, (2) farming activities, (3) coal combustion, and (4) exhaust emissions. Natural sources represented the largest contributor to ecological risk, accounting for 57.42% of the total. Coal combustion was the major contributor to human health risks, accounting for 43.27% and 43.73% of the total non-carcinogenic risk and carcinogenic risk for adults, respectively, and 42.72% and 43.88% for children, respectively

    Influence of design and media amendments on the performance of stormwater biofilters

    Get PDF
    Biofiltration systems are a promising retrofit option for site-constrained urban areas due to the vertical arrangement of treatment stages that leads to a relatively compact footprint. Existing knowledge about the influence of their design and configuration on hydrological, stormwater pollutant removal and long-term performance is limited and this has been identified as a barrier to their widespread uptake. Long-term simulations of lined and unlined biofiltration systems in four contrasting UK climatic regimes were used to assess the influence of climate, ponding depth, biofilter to drainage area ratio and infiltration rate on hydrological performance. The results showed that local differences in climate have a significant impact on performance and that infiltration rates as low as 0·36 mm/h are not suitable for locations in the UK with high rainfall unless the biofilter to drainage area ratio is greater than 10%. However, with higher infiltration rates (72 mm/h) a biofilter occupying only 3% of the impermeable catchment area would be capable of infiltrating 97% of annual rainfall in central England. Preliminary results of adsorption and column tests to assess the effectiveness of media amendments, specifically zeolite and granular activated carbon, for dissolved copper and phosphate removal are presented in this paper

    Geochemistry of As-, F- and B-bearing waters in and around San Antonio de los Cobres, Argentina, and implications for drinking and irrigation water quality

    Get PDF
    Spring, stream and tap waters from in and around San Antonio de los Cobres, Salta, Argentina, were sampled to characterize their geochemical signatures, and to determine whether they pose a threat to human health and crops. The spring waters are typical of geothermal areas world-wide, in that they are Na-Cl waters with high concentrations of Astot, As(III), Li, B, HCO3, F and SiO2 (up to 9.49, 8.92, 13.1, 56.6, 1250, 7.30 and 57.2 mg L-1, respectively), and result from mixing of deep Na-Cl brines and meteoric HCO3-rich waters. Springs close to the town of San Antonio have higher concentrations of all elements, and are generally cooler, than springs in the Baños de Agua Caliente. Spring water chemistry is a result of mixing of deep Na-Cl brines and meteoric HCO3 waters. Stream waters are also Na-Cl type, and receive large inputs of all elements from the springs near San Antonio, but concentrations decrease downstream through the town of San Antonio due to mineral precipitation. The spring that is used as a drinking water source, and other springs in the area, have As, F and B concentrations in excess of WHO and Argentinian drinking water guidelines. Evaluation of the waters for irrigation purposes suggests that their high salinities and B concentrations may adversely affect crops. The waters may be improved for drinking and irrigation by dilution with cleaner meteoric waters, mineral precipitation or by use of commercial filters. Such recommendations could also be followed by other settlements that draw drinking and irrigation waters from geothermal sources

    Determining the influence of different atmospheric circulation patterns on PM10 chemical composition in a source apportionment study

    Get PDF
    This study combines a set of chemometric analyses with a source apportionment model for discriminating the weather conditions, local processes and remote contributions having an impact on particulate matter levels and chemical composition. The proposed approach was tested on PM10 data collected in a semi-rural coastal site near Venice (Italy). The PM10 mass, elemental composition and the water soluble inorganic ions were quantified and seven sources were identified and apportioned using the positive matrix factorization: sea spray, aged sea salt, mineral dust, mixed combustions, road traffic, secondary sulfate and secondary nitrate. The influence of weather conditions on PM10 composition and its sources was investigated and the importance of air temperature and relative humidity on secondary components was evaluated. Samples collected in days with similar atmospheric circulation patterns were clustered on the basis of wind speed and direction. Significant differences in PM10 levels and chemical composition pointed out that the production of sea salt is strongly depending on the intensity of local winds. Differently, typical primary pollutants (i.e. from combustion and road traffic) increased during slow wind regimes. External contributions were also investigated by clustering the backward trajectories of air masses. The increase of combustion and traffic-related pollutants was observed when air masses originated from Central and Northwestern Europe and secondary sulfate was observed to rise when air masses had passed over the Po Valley. Conversely, anthropogenic contributions dropped when the origin was in the Mediterranean area and Northern Europe. The chemometric approach adopted can discriminate the role local and external sources play in determining the level and composition of airborne particulate matter and points out the weather circumstances favoring the worst pollution conditions. It may be of significant help in designing local and national air pollution control strategies
    corecore