1,674 research outputs found

    Paenibacillus melissococcoides sp. nov., isolated from a honey bee colony affected by European foulbrood disease.

    Get PDF
    A novel, facultatively anaerobic, Gram-stain-positive, motile, endospore-forming bacterium of the genus Paenibacillus, designated strain 2.1T, was isolated from a colony of Apis mellifera affected by European foulbrood disease in Switzerland. The rod-shaped cells of strain 2.1T were 2.2–6.5 μm long and 0.7–1.1 μm wide. Colonies of strain 2.1T were orange-pigmented under oxic growth conditions on solid basal medium at 35–37 °C. Strain 2.1T showed catalase and cytochrome c oxidase activity. Its polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, aminophospholipid and phospholipid. The only respiratory quinone was menaquinone 7, and the major cellular fatty acids were anteiso-C15 : 0, anteiso-C17 : 0, iso-C15 : 0, iso-C17 : 0 and palmitic acid (C16 : 0), which is consistent with other members of the genus Paenibacillus. The G+C content of the genomic DNA of strain 2.1T was 53.3 mol%. Phylogenetic analyses based on the 16S rRNA gene sequence similarity showed that strain 2.1T was closely related to Paenibacillus dendritiformis LMG 21716T (99.7 % similarity) and Paenibacillus thiaminolyticus DSM 7262T (98.8 %). The whole-genome average nucleotide identity between strain 2.1T and the type strains of P. dendritiformis and P. thiaminolyticus was 92 and 91 %, respectively, and thus lower than the 95 % threshold value for delineation of genomic prokaryotic species. Based on the results of phylogenetic, genomic, phenotypic and chemotaxonomic analyses we propose the name Paenibacillus melissococcoides sp. nov. for this novel Paenibacillus species. The type strain is 2.1T (=CCOS 2000T=DSM 113619T=LMG 32539T)

    Metabolic Footprinting of Fermented Milk Consumption in Serum of Healthy Men.

    Get PDF
    Fermentation is a widely used method of natural food preservation that has consequences on the nutritional value of the transformed food. Fermented dairy products are increasingly investigated in view of their ability to exert health benefits beyond their nutritional qualities. To explore the mechanisms underpinning the health benefits of fermented dairy intake, the present study followed the effects of milk fermentation, from changes in the product metabolome to consequences on the human serum metabolome after its ingestion. A randomized crossover study design was conducted in 14 healthy men [mean age: 24.6 y; mean body mass index (in kg/m2): 21.8]. At the beginning of each test phase, serum samples were taken 6 h postprandially after the ingestion of 800 g of a nonfermented milk or a probiotic yogurt. During the 2-wk test phases, subjects consumed 400 g of the assigned test product daily (200 g, 2 times/d). Serum samples were taken from fasting participants at the end of each test phase. The serum metabolome was assessed through the use of LC-MS-based untargeted metabolomics. Postprandial serum metabolomes after milk or yogurt intake could be differentiated [orthogonal projections to latent structures discriminant analysis (OPLS-DA) Q2 = 0.74]. Yogurt intake was characterized by higher concentrations of 7 free amino acids (including proline, P = 0.03), reduced concentrations of 5 bile acids (including glycocholic acid, P = 0.04), and modulation of 4 indole derivative compounds (including indole lactic acid, P = 0.01). Fasting serum samples after 2 wk of daily intake of milk or yogurt could also be differentiated based on their metabolic profiles (OPLS-DA Q2 = 0.56) and were discussed in light of the postprandial results. Metabolic pathways related to amino acids, indole derivatives, and bile acids were modulated in healthy men by the intake of yogurt. Further investigation to explore novel health effects of fermented dairy products is warranted.This trial was registered at clinicaltrials.gov as NCT02230345

    Beyond the EPR: Complementary roles of the hospital-wide electronic health record and clinical departmental systems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many hospital departments have implemented small clinical departmental systems (CDSs) to collect and use patient data for documentation as well as for other department-specific purposes. As hospitals are implementing institution-wide electronic patient records (EPRs), the EPR is thought to be integrated with, and gradually substitute the smaller systems. Many EPR systems however fail to support important clinical workflows. Also, successful integration of systems has proven hard to achieve. As a result, CDSs are still in widespread use. This study was conducted to see which tasks are supported by CDSs and to compare this to the support offered by the EPR.</p> <p>Methods</p> <p>Semi-structured interviews with users of 16 clinicians using 15 different clinical departmental systems (CDS) at a Medium-sized University hospital in Norway. Inductive analysis of transcriptions from the audio taped interviews.</p> <p>Results</p> <p>The roles of CDSs were complementary to those of the hospital-wide EPR system. The use of structured patient data was a characteristic feature. This facilitated quality development and supervision, tasks that were poorly supported by the EPR system. The structuring of the data also improved filtering of information to better support clinical decision-making. Because of the high value of the structured patient data, the users put much effort in maintaining their integrity and representativeness. Employees from the departments were also engaged in the funding, development, implementation and maintenance of the systems.</p> <p>Conclusion</p> <p>Clinical departmental systems are vital to the activities of a clinical hospital department. The development, implementation and clinical use of such systems can be seen as bottom-up, user-driven innovations.</p

    Isothermal Microcalorimetry, a New Tool to Monitor Drug Action against Trypanosoma brucei and Plasmodium falciparum

    Get PDF
    Isothermal microcalorimetry is an established tool to measure heat flow of physical, chemical or biological processes. The metabolism of viable cells produces heat, and if sufficient cells are present, their heat production can be assessed by this method. In this study, we investigated the heat flow of two medically important protozoans, Trypanosoma brucei rhodesiense and Plasmodium falciparum. Heat flow signals obtained for these pathogens allowed us to monitor parasite growth on a real-time basis as the signals correlated with the number of viable cells. To showcase the potential of microcalorimetry for measuring drug action on pathogenic organisms, we tested the method with three antitrypanosomal drugs, melarsoprol, suramin and pentamidine and three antiplasmodial drugs, chloroquine, artemether and dihydroartemisinin, each at two concentrations on the respective parasite. With the real time measurement, inhibition was observed immediately by a reduced heat flow compared to that in untreated control samples. The onset of drug action, the degree of inhibition and the time to death of the parasite culture could conveniently be monitored over several days. Microcalorimetry is a valuable element to be added to the toolbox for drug discovery for protozoal diseases such as human African trypanosomiasis and malaria. The method could probably be adapted to other protozoan parasites, especially those growing extracellularly

    Unveiling Protein Functions through the Dynamics of the Interaction Network

    Get PDF
    Protein interaction networks have become a tool to study biological processes, either for predicting molecular functions or for designing proper new drugs to regulate the main biological interactions. Furthermore, such networks are known to be organized in sub-networks of proteins contributing to the same cellular function. However, the protein function prediction is not accurate and each protein has traditionally been assigned to only one function by the network formalism. By considering the network of the physical interactions between proteins of the yeast together with a manual and single functional classification scheme, we introduce a method able to reveal important information on protein function, at both micro- and macro-scale. In particular, the inspection of the properties of oscillatory dynamics on top of the protein interaction network leads to the identification of misclassification problems in protein function assignments, as well as to unveil correct identification of protein functions. We also demonstrate that our approach can give a network representation of the meta-organization of biological processes by unraveling the interactions between different functional classes

    The Sail-Backed Reptile Ctenosauriscus from the Latest Early Triassic of Germany and the Timing and Biogeography of the Early Archosaur Radiation

    Get PDF
    Background Archosaurs (birds, crocodilians and their extinct relatives including dinosaurs) dominated Mesozoic continental ecosystems from the Late Triassic onwards, and still form a major component of modern ecosystems (>10,000 species). The earliest diverse archosaur faunal assemblages are known from the Middle Triassic (c. 244 Ma), implying that the archosaur radiation began in the Early Triassic (252.3–247.2 Ma). Understanding of this radiation is currently limited by the poor early fossil record of the group in terms of skeletal remains. Methodology/Principal Findings We redescribe the anatomy and stratigraphic position of the type specimen of Ctenosauriscus koeneni (Huene), a sail-backed reptile from the Early Triassic (late Olenekian) Solling Formation of northern Germany that potentially represents the oldest known archosaur. We critically discuss previous biomechanical work on the ‘sail’ of Ctenosauriscus, which is formed by a series of elongated neural spines. In addition, we describe Ctenosauriscus-like postcranial material from the earliest Middle Triassic (early Anisian) Röt Formation of Waldhaus, southwestern Germany. Finally, we review the spatial and temporal distribution of the earliest archosaur fossils and their implications for understanding the dynamics of the archosaur radiation. Conclusions/Significance Comprehensive numerical phylogenetic analyses demonstrate that both Ctenosauriscus and the Waldhaus taxon are members of a monophyletic grouping of poposauroid archosaurs, Ctenosauriscidae, characterised by greatly elongated neural spines in the posterior cervical to anterior caudal vertebrae. The earliest archosaurs, including Ctenosauriscus, appear in the body fossil record just prior to the Olenekian/Anisian boundary (c. 248 Ma), less than 5 million years after the Permian–Triassic mass extinction. These earliest archosaur assemblages are dominated by ctenosauriscids, which were broadly distributed across northern Pangea and which appear to have been the first global radiation of archosaurs

    Investigating the Associations among Overtime Work, Health Behaviors, and Health: A Longitudinal Study among Full-time Employees

    Get PDF
    # The Author(s) 2010. This article is published with open access at Springerlink.com Background It has often been suggested that high levels of overtime lead to adverse health outcomes. One mechanism that may account for this association is that working overtime leads to elevated levels of stress, which could affect worker’s behavioral decisions or habits (such as smoking and lack of physical activity). In turn, this could lead to adverse health. Purpose The present study examined this reasoning in a prospective longitudinal design. Data from the prospective 2-year Study on Health at Work (N=649) were used to test our hypotheses. Methods Structural equation analysis was used to examine the relationships among overtime, beneficial (exercising, intake of fruit and vegetables) and risky (smoking and drinking) health behaviors, and health indicators (BMI and subjective health). Results Working overtime was longitudinally related with adverse subjective health, but not with body mass

    Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    Inclusive transverse momentum spectra of primary charged particles in Pb-Pb collisions at sNN\sqrt{s_{_{\rm NN}}} = 2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross section. The measured charged particle spectra in η<0.8|\eta|<0.8 and 0.3<pT<200.3 < p_T < 20 GeV/cc are compared to the expectation in pp collisions at the same sNN\sqrt{s_{\rm NN}}, scaled by the number of underlying nucleon-nucleon collisions. The comparison is expressed in terms of the nuclear modification factor RAAR_{\rm AA}. The result indicates only weak medium effects (RAAR_{\rm AA} \approx 0.7) in peripheral collisions. In central collisions, RAAR_{\rm AA} reaches a minimum of about 0.14 at pT=6p_{\rm T}=6-7GeV/cc and increases significantly at larger pTp_{\rm T}. The measured suppression of high-pTp_{\rm T} particles is stronger than that observed at lower collision energies, indicating that a very dense medium is formed in central Pb-Pb collisions at the LHC.Comment: 15 pages, 5 captioned figures, 3 tables, authors from page 10, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/98
    corecore