1,112 research outputs found

    Snyder noncommutative space-time from two-time physics

    Full text link
    We show that the two-time physics model leads to a mechanical system with Dirac brackets consistent with the Snyder noncommutative space. An Euclidean version of this space is also obtained and it is shown that both spaces have a dual system describing a particle in a curved space-time.Comment: 5 pages, RevTeX4. References adde

    Usefulness of Plasmodium falciparum-specific rapid diagnostic tests for assessment of parasite clearance and detection of recurrent infections after artemisinin-based combination therapy

    Get PDF
    Background: Rapid diagnostic test (RDT) is an important tool for parasite-based malaria diagnosis. High specificity of RDTs to distinguish an active Plasmodium falciparum infection from residual antigens from a previous infection is crucial in endemic areas where residents are repeatedly exposed to malaria. The efficiency of two RDTs based on histidine-rich protein 2 (HRP2) and lactate dehydrogenase (LDH) antigens were studied and compared with two microscopy techniques (Giemsa and acridine orange-stained blood smears) and real-time polymerase chain reaction (PCR) for assessment of initial clearance and detection of recurrent P. falciparum infections after artemisinin-based combination therapy (ACT) in a moderately high endemic area of rural Tanzania. Methods: In this exploratory study 53 children \u3c five years with uncomplicated P. falciparum malaria infection were followed up on nine occasions, i.e., day 1, 2, 3, 7, 14, 21, 28, 35 and 42, after initiation of artemether-lumefantrine treatment. At each visit capillary blood samples was collected for the HRP2 and LDH-based RDTs, Giemsa and acridine orange-stained blood smears for microscopy and real-time PCR. Assessment of clearance times and detection of recurrent P. falciparum infections were done for all diagnostic methods. Results: The median clearance times were 28 (range seven to \u3e42) and seven (two to 14) days for HRP2 and LDH-based RDTs, two (one to seven) and two (one to 14) days for Giemsa and acridine orange-stained blood smear and two (one to 28) days for real-time PCR. RDT specificity against Giemsa-stained blood smear microscopy was 21% for HRP2 on day 14, reaching 87% on day 42, and ≥96% from day 14 to 42 for LDH. There was no significant correlation between parasite density at enrolment and duration of HRP2 positivity (r = 0.13, p = 0.34). Recurrent malaria infections occurred in ten (19%) children. The HRP2 and LDH-based RDTs did not detect eight and two of the recurrent infections, respectively. Conclusion: The LDH-based RDT was superior to HRP2-based for monitoring of treatment outcome and detection of recurrent infections after ACT in this moderately high transmission setting. The results may have implications for the choice of RDT devices in similar transmission settings for improved malaria case management. Trial registration. Clinicaltrials.gov, NCT01843764. © 2013 Aydin-Schmidt et al.; licensee BioMed Central Ltd

    Conformal Symmetry and Duality between Free Particle, H-atom and Harmonic Oscillator

    Get PDF
    We establish a duality between the free massless relativistic particle in d dimensions, the non-relativistic hydrogen atom (1/r potential) in (d-1) space dimensions, and the harmonic oscillator in (d-2) space dimensions with its mass given as the lightcone momentum of an additional dimension. The duality is in the sense that the classical action of these systems are gauge fixed forms of the same worldline gauge theory action at the classical level, and they are all described by the same unitary representation of the conformal group SO(d,2) at the quantum level. The worldline action has a gauge symmetry Sp(2) which treats canonical variables (x,p) as doublets and exists only with a target spacetime that has d spacelike dimensions and two timelike dimensions. This spacetime is constrained due to the gauge symmetry, and the various dual solutions correspond to solutions of the constraints with different topologies. For example, for the H-atom the two timelike dimensions X^{0'},X^{0} live on a circle. The model provides an example of how realistic physics can be viewed as existing in a larger covariant space that includes two timelike coordinates, and how the covariance in the larger space unifies different looking physics into a single system.Comment: Latex, 23 pages, minor improvements. In v3 a better gauge choice for u for the H-atom is made; the results are the sam

    Gauge symmetry in phase space with spin, a basis for conformal symmetry and duality among many interactions

    Get PDF
    We show that a simple OSp(1/2) worldline gauge theory in 0-brane phase space (X,P), with spin degrees of freedom, formulated for a d+2 dimensional spacetime with two times X^0,, X^0', unifies many physical systems which ordinarily are described by a 1-time formulation. Different systems of 1-time physics emerge by choosing gauges that embed ordinary time in d+2 dimensions in different ways. The embeddings have different topology and geometry for the choice of time among the d+2 dimensions. Thus, 2-time physics unifies an infinite number of 1-time physical interacting systems, and establishes a kind of duality among them. One manifestation of the two times is that all of these physical systems have the same quantum Hilbert space in the form of a unique representation of SO(d,2) with the same Casimir eigenvalues. By changing the number n of spinning degrees of freedom the gauge group changes to OSp(n/2). Then the eigenvalue of the Casimirs of SO(d,2) depend on n and then the content of the 1-time physical systems that are unified in the same representation depend on n. The models we study raise new questions about the nature of spacetime.Comment: Latex, 42 pages. v2 improvements in AdS section. In v3 sec.6.2 is modified; the more general potential is limited to a smaller clas

    Calculation of PandP_ and T_ odd effects in $"" sup 205_TIF including electron correlation

    Full text link
    A method and codes for two-step correlation calculation of heavy-atom molecules have been developed, employing the generalized relativistic effective core potential and relativistic coupled cluster (RCC) methods at the first step, followed by nonvariational one-center restoration of proper four-component spinors in the heavy cores. Electron correlation is included for the first time in an ab initio calculation of the interaction of the permanent P,T-odd proton electric dipole moment with the internal electromagnetic field in a molecule. The calculation is performed for the ground state of TlF at the experimental equilibrium, R_e=2.0844 A, and at R=2.1 A, with spin-orbit and correlation effects included by RCC. Calculated results with single cluster amplitudes only are in good agreement (3% and 1%) with recent Dirac-Hartree-Fock (DHF) values of the magnetic parameter M; the larger differences occurring between present and DHF volume parameter (X) values, as well as between the two DHF calculations, are explained. Inclusion of electron correlation by GRECP/RCC with single and double excitations has a major effect on the P,T-odd parameters, decreasing M by 17% and X by 22%.Comment: 5 pages, REVTeX4 style Accepted for publication in Phys.Rev.Letter

    Surface reconstruction induced geometries of Si clusters

    Full text link
    We discuss a generalization of the surface reconstruction arguments for the structure of intermediate size Si clusters, which leads to model geometries for the sizes 33, 39 (two isomers), 45 (two isomers), 49 (two isomers), 57 and 61 (two isomers). The common feature in all these models is a structure that closely resembles the most stable reconstruction of Si surfaces, surrounding a core of bulk-like tetrahedrally bonded atoms. We investigate the energetics and the electronic structure of these models through first-principles density functional theory calculations. These models may be useful in understanding experimental results on the reactivity of Si clusters and their shape as inferred from mobility measurements.Comment: 9 figures (available from the author upon request) Submitted to Phys. Rev.

    Experience of safety monitoring in the context of a prospective observational study of artemether-lumefantrine in rural Tanzania: lessons learned for pharmacovigilance reporting

    Get PDF
    <p>Abstract</p> <p>Objectives</p> <p>To identify and implement strategies that help meet safety monitoring requirements in the context of an observational study for artemether-lumefantrine (AL) administered as first-line treatment for uncomplicated malaria in rural Tanzania.</p> <p>Methods</p> <p>Pharmacovigilance procedures were developed through collaboration between the investigating bodies, the relevant regulatory authority and the manufacturer of AL. Training and refresher sessions on the pharmacovigilance system were provided for healthcare workers from local health facilities and field recorders of the Ifakara Health Demographic Surveillance System (IHDSS). Three distinct channels for identification of adverse events (AEs) and serious adverse events (SAEs) were identified and implemented. Passive reporting took place through IHDSS and health care facilities, starting in October 2007. The third channel was through solicited reporting that was included in the context of a survey on AL as part of the ALIVE (<b>A</b>rtemether-<b>L</b>umefantrine <b>I</b>n <b>V</b>ulnerable patients: <b>E</b>xploring health impact) study (conducted only in March-April 2008).</p> <p>Results</p> <p>Training was provided for 40 healthcare providers (with refresher training 18 months later) and for six field recorders. During the period 1<sup>st </sup>September 2007 to 31<sup>st </sup>March 2010, 67 AEs were reported including 52 under AL, five under sulphadoxine-pyrimethamine, one under metakelfin, two after antibiotics; the remaining seven were due to anti-pyretic or anti-parasite medications. Twenty patients experienced SAEs; in 16 cases, a relation to AL was suspected. Six of the 20 cases were reported within 24 hours of occurrence.</p> <p>Discussion</p> <p>Safety monitoring and reporting is possible even in settings with weak health infrastructure. Reporting can be enhanced by regular and appropriate training of healthcare providers. SMS text alerts provide a practical solution to communication challenges.</p> <p>Conclusion</p> <p>Experience gained in this setting could help to improve spontaneous reporting of AEs and SAEs to health authorities or marketing authorization holders.</p

    Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Full text link
    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas -- particle, nuclear and atomic is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for EPJ

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
    corecore