107 research outputs found

    Validation of a new assay for alpha-synuclein detection in cerebrospinal fluid

    Get PDF
    BACKGROUND: Abnormal α-synuclein aggregation and deposition is the pathological hallmark of Parkinson’s disease (PD) and dementia with Lewy bodies (DLB), but is also found in Alzheimer disease (AD). Therefore, there is a gaining interest in α-synuclein in cerebrospinal fluid (CSF) as potential biomarker for these neurodegenerative diseases. To broaden the available choices of α-synuclein measurement in CSF, we developed and validated a new assay for detecting total α-synuclein. METHODS: This novel ELISA uses commercially available antibodies and is based on electrochemiluminescence technology. The assay protocol is straightforward, with short and simple incubation steps, and requires only small amounts of CSF. We validated this assay for precision, parallelism, dilution linearity, specificity, and spike recovery. We further compared it to the newly validated α-synuclein assay from BioLegend by analyzing a set of 50 CSF samples with both assays. RESULTS: The new assay quantifies α-synuclein in CSF with a lower limit of detection of 36.3 pg/mL and shows no cross-reactivity with human β- and γ-synuclein. Results of dilution linearity, parallelism, spike recovery, and precision classify this assay as well suited for α-synuclein detection in human CSF samples. CONCLUSIONS: We present a novel assay based on freely available components to quantify total α-synuclein in CSF as an additional method for α-synuclein as a biomarker in neurodegenerative diseases. The assay convinces with its simple and convenient protocol paired with high sensitivity

    Evolution of cerebrospinal fluid total α-synuclein in Parkinson's disease

    Get PDF
    Introduction: Cerebrospinal fluid (CSF) total α-synuclein is considered a potential biomarker for Parkinson's disease (PD), but little is known about the evolution of this marker during the course of the disease. Our objective was to investigate whether CSF total α-synuclein concentrations change over time and are associated with motor and cognitive function in PD. Methods: CSF total α-synuclein concentrations were quantified in 56 longitudinally followed PD patients, 27 of whom provided CSF repeatedly 2 and/or 4 years later. Another 18 subjects were included as controls. The samples were analyzed using two independent, validated ELISA methods: our recently developed and validated in-house ELISA and a commercial kit from BioLegend. Results: CSF total α-synuclein levels did not distinguish PD patients from controls, displayed no substantial changes during a period of up to 4 years, and did not predict subsequent motor or cognitive decline. These findings were consistent for both analytical methods. Conclusion: Our findings do not support the clinical utility of total α-synuclein as a single diagnostic or prognostic biomarker in PD

    Computer simulation of glioma growth and morphology

    Get PDF
    Despite major advances in the study of glioma, the quantitative links between intra-tumor molecular/cellular properties, clinically observable properties such as morphology, and critical tumor behaviors such as growth and invasiveness remain unclear, hampering more effective coupling of tumor physical characteristics with implications for prognosis and therapy. Although molecular biology, histopathology, and radiological imaging are employed in this endeavor, studies are severely challenged by the multitude of different physical scales involved in tumor growth, i.e., from molecular nanoscale to cell microscale and finally to tissue centimeter scale. Consequently, it is often difficult to determine the underlying dynamics across dimensions. New techniques are needed to tackle these issues. Here, we address this multi-scalar problem by employing a novel predictive three-dimensional mathematical and computational model based on first-principle equations (conservation laws of physics) that describe mathematically the diffusion of cell substrates and other processes determining tumor mass growth and invasion. The model uses conserved variables to represent known determinants of glioma behavior, e.g., cell density and oxygen concentration, as well as biological functional relationships and parameters linking phenomena at different scales whose specific forms and values are hypothesized and calculated based on in vitro and in vivo experiments and from histopathology of tissue specimens from human gliomas. This model enables correlation of glioma morphology to tumor growth by quantifying interdependence of tumor mass on the microenvironment (e.g., hypoxia, tissue disruption) and on the cellular phenotypes (e.g., mitosis and apoptosis rates, cell adhesion strength). Once functional relationships between variables and associated parameter values have been informed, e.g., from histopathology or intra-operative analysis, this model can be used for disease diagnosis/prognosis, hypothesis testing, and to guide surgery and therapy. In particular, this tool identifies and quantifies the effects of vascularization and other cell-scale glioma morphological characteristics as predictors of tumor-scale growth and invasion

    Topoisomerase II\u3b2 mediates the resistance of glioblastoma stem cells to replication stress-inducing drugs

    Get PDF
    The mesenchymal state in cancer is usually associated with poor prognosis due to the metastatic predisposition and the hyper-activated metabolism. Exploiting cell glucose metabolism we propose a new method to detect mesenchymal-like cancer cells. We demonstrate that the uptake of glucose-coated magnetic nanoparticles (MNPs) by mesenchymal-like cells remains constant when the glucose in the medium is increased from low (5.5 mM) to high (25 mM) concentration, while the MNPs uptake by epithelial-like cells is significantly reduced. These findings reveal that the glucose-shell of MNPs plays a major role in recognition of cells with high-metabolic activity. By selectively blocking the glucose transporter 1 channels we showed its involvement in the internalization process of glucose-coated MNPs. Our results suggest that glucose-coated MNPs can be used for metabolic-based assays aimed at detecting cancer cells and that can be used to selectively target cancer cells taking advantage, for instance, of the magnetic-thermotherapy

    The art of cellular communication: tunneling nanotubes bridge the divide

    Get PDF
    The ability of cells to receive, process, and respond to information is essential for a variety of biological processes. This is true for the simplest single cell entity as it is for the highly specialized cells of multicellular organisms. In the latter, most cells do not exist as independent units, but are organized into specialized tissues. Within these functional assemblies, cells communicate with each other in different ways to coordinate physiological processes. Recently, a new type of cell-to-cell communication was discovered, based on de novo formation of membranous nanotubes between cells. These F-actin-rich structures, referred to as tunneling nanotubes (TNT), were shown to mediate membrane continuity between connected cells and facilitate the intercellular transport of various cellular components. The subsequent identification of TNT-like structures in numerous cell types revealed some structural diversity. At the same time it emerged that the direct transfer of cargo between cells is a common functional property, suggesting a general role of TNT-like structures in selective, long-range cell-to-cell communication. Due to the growing number of documented thin and long cell protrusions in tissue implicated in cell-to-cell signaling, it is intriguing to speculate that TNT-like structures also exist in vivo and participate in important physiological processes

    Differences in the Presentation and Progression of Parkinson's Disease by Sex.

    Get PDF
    BACKGROUND: Previous studies reported various symptoms of Parkinson's disease (PD) associated with sex. Some were conflicting or confirmed in only one study. OBJECTIVES: We examined sex associations to PD phenotypes cross-sectionally and longitudinally in large-scale data. METHODS: We tested 40 clinical phenotypes, using longitudinal, clinic-based patient cohorts, consisting of 5946 patients, with a median follow-up of 3.1 years. For continuous outcomes, we used linear regressions at baseline to test sex-associated differences in presentation, and linear mixed-effects models to test sex-associated differences in progression. For binomial outcomes, we used logistic regression models at baseline and Cox regression models for survival analyses. We adjusted for age, disease duration, and medication use. In the secondary analyses, data from 17 719 PD patients and 7588 non-PD participants from an online-only, self-assessment PD cohort were cross-sectionally evaluated to determine whether the sex-associated differences identified in the primary analyses were consistent and unique to PD. RESULTS: Female PD patients had a higher risk of developing dyskinesia early during the follow-up period, with a slower progression in activities of daily living difficulties, and a lower risk of developing cognitive impairments compared with male patients. The findings in the longitudinal, clinic-based cohorts were mostly consistent with the results of the online-only cohort. CONCLUSIONS: We observed sex-associated contributions to PD heterogeneity. These results highlight the necessity of future research to determine the underlying mechanisms and importance of personalized clinical management. © 2020 International Parkinson and Movement Disorder Society.This study was supported by the Intramural Research Program the National Institute on Aging (NIA, Z01-AG000949-02), Biogen Idec, and the Michael J Fox Foundation for Parkinson’s Research

    Rapid Selection and Proliferation of CD133(+) Cells from Cancer Cell Lines: Chemotherapeutic Implications

    Get PDF
    Cancer stem cells (CSCs) are considered a subset of the bulk tumor responsible for initiating and maintaining the disease. Several surface cellular markers have been recently used to identify CSCs. Among those is CD133, which is expressed by hematopoietic progenitor cells as well as embryonic stem cells and various cancers. We have recently isolated and cultured CD133 positive [CD133(+)] cells from various cancer cell lines using a NASA developed Hydrodynamic Focusing Bioreactor (HFB) (Celdyne, Houston, TX). For comparison, another bioreactor, the rotary cell culture system (RCCS) manufactured by Synthecon (Houston, TX) was used. Both the HFB and the RCCS bioreactors simulate aspects of hypogravity. In our study, the HFB increased CD133(+) cell growth from various cell lines compared to the RCCS vessel and to normal gravity control. We observed a (+)15-fold proliferation of the CD133(+) cellular fraction with cancer cells that were cultured for 7-days at optimized conditions. The RCCS vessel instead yielded a (−)4.8-fold decrease in the CD133(+)cellular fraction respect to the HFB after 7-days of culture. Interestingly, we also found that the hypogravity environment of the HFB greatly sensitized the CD133(+) cancer cells, which are normally resistant to chemo treatment, to become susceptible to various chemotherapeutic agents, paving the way to less toxic and more effective chemotherapeutic treatment in patients. To be able to test the efficacy of cytotoxic agents in vitro prior to their use in clinical setting on cancer cells as well as on cancer stem cells may pave the way to more effective chemotherapeutic strategies in patients. This could be an important advancement in the therapeutic options of oncologic patients, allowing for more targeted and personalized chemotherapy regimens as well as for higher response rates

    Genetic risk of Parkinson disease and progression:: An analysis of 13 longitudinal cohorts.

    Get PDF
    OBJECTIVE: To determine if any association between previously identified alleles that confer risk for Parkinson disease and variables measuring disease progression. METHODS: We evaluated the association between 31 risk variants and variables measuring disease progression. A total of 23,423 visits by 4,307 patients of European ancestry from 13 longitudinal cohorts in Europe, North America, and Australia were analyzed. RESULTS: We confirmed the importance of GBA on phenotypes. GBA variants were associated with the development of daytime sleepiness (p.N370S: hazard ratio [HR] 3.28 [1.69-6.34]) and possible REM sleep behavior (p.T408M: odds ratio 6.48 [2.04-20.60]). We also replicated previously reported associations of GBA variants with motor/cognitive declines. The other genotype-phenotype associations include an intergenic variant near LRRK2 and the faster development of motor symptom (Hoehn and Yahr scale 3.0 HR 1.33 [1.16-1.52] for the C allele of rs76904798) and an intronic variant in PMVK and the development of wearing-off effects (HR 1.66 [1.19-2.31] for the C allele of rs114138760). Age at onset was associated with TMEM175 variant p.M393T (-0.72 [-1.21 to -0.23] in years), the C allele of rs199347 (intronic region of GPNMB, 0.70 [0.27-1.14]), and G allele of rs1106180 (intronic region of CCDC62, 0.62 [0.21-1.03]). CONCLUSIONS: This study provides evidence that alleles associated with Parkinson disease risk, in particular GBA variants, also contribute to the heterogeneity of multiple motor and nonmotor aspects. Accounting for genetic variability will be a useful factor in understanding disease course and in minimizing heterogeneity in clinical trials.The Intramural Research Program the National Institute on Aging (NIA, Z01-AG000949-02), Biogen Idec, and the Michael J Fox Foundation for Parkinson’s Researc
    • …
    corecore