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Abstract
Objective
To determine if any association between previously identified alleles that confer risk for Parkinson disease and variables
measuring disease progression.

Methods
We evaluated the association between 31 risk variants and variables measuring disease progression. A total of 23,423 visits by
4,307 patients of European ancestry from 13 longitudinal cohorts in Europe, North America, and Australia were analyzed.

Results
We confirmed the importance of GBA on phenotypes. GBA variants were associated with the development of daytime
sleepiness (p.N370S: hazard ratio [HR] 3.28 [1.69–6.34]) and possible REM sleep behavior (p.T408M: odds ratio 6.48
[2.04–20.60]). We also replicated previously reported associations ofGBA variants with motor/cognitive declines. The other
genotype-phenotype associations include an intergenic variant near LRRK2 and the faster development of motor symptom
(Hoehn and Yahr scale 3.0 HR 1.33 [1.16–1.52] for the C allele of rs76904798) and an intronic variant in PMVK and the
development of wearing-off effects (HR 1.66 [1.19–2.31] for the C allele of rs114138760). Age at onset was associated with
TMEM175 variant p.M393T (−0.72 [−1.21 to −0.23] in years), the C allele of rs199347 (intronic region of GPNMB, 0.70
[0.27–1.14]), and G allele of rs1106180 (intronic region of CCDC62, 0.62 [0.21–1.03]).

Conclusions
This study provides evidence that alleles associated with Parkinson disease risk, in particular GBA variants, also contribute to
the heterogeneity of multiple motor and nonmotor aspects. Accounting for genetic variability will be a useful factor in
understanding disease course and in minimizing heterogeneity in clinical trials.
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Parkinson disease is one of the most common neurodegen-
erative diseases, with an estimated lifetime risk as high as
1%–2%.1 Parkinson disease is traditionally characterized by
motor features such as bradykinesia, rigidity, and tremor.
However, in addition to these motor symptoms, patients with
Parkinson disease also develop nonmotor symptoms
(NMSs), which include depression, cognitive decline, sleep
abnormalities, reduced olfaction, and autonomic dysfunc-
tion.2 Collectively, the combined spectrum of motor and
NMSs more accurately reflects the multisystem nature of the
disease. Patients with Parkinson disease may present with
various combinations of symptoms and show differences in
the rates of progression.3 The application of modern molec-
ular genetic approaches over the last decade has revealed
a significant number of genetic risk loci for idiopathic Par-
kinson disease.4–7 However, in comparison with case-control
genome-wide association study (GWAS), analyzing how ge-
netic factors influence clinical presentation and progression
requires longitudinal cohorts with much more detailed
observations. Such data are sparse, and individual cohorts are
often small in size and quite varied, posing a challenge both in
sample size and heterogeneity.

In an attempt to address these issues, we collected data from
13 distinct longitudinal Parkinson disease cohorts with de-
tailed clinical data, including assessment of disease pro-
gression. We sought to determine whether Parkinson disease
genetic risk factors, either in the form of known GWAS var-
iants or an aggregate genetic risk score (GRS), are associated
with changes in clinical progression and the disease features.

Methods
Study design and participants
A total of 13 Parkinson disease cohorts from North America,
Europe, and Australia participated in the study. Nine were
prospective observational cohorts and the rest were from
randomized clinical trials. The observational cohorts were
Drug Interaction with Genes in Parkinson’s Disease
(DIGPD), Harvard Biomarkers Study (HBS), Oslo Parkin-
son’s Disease study (partly including retrospective data), The
Norwegian ParkWest study (ParkWest), Parkinson’s Disease
Biomarker Program (PDBP), Parkinsonism: Incidence and
Cognitive and Non-motor heterogeneity In CambridgeShire
(PICNICS), Parkinson’s Progression Markers Initiative

(PPMI), Profiling Parkinson’s disease study (ProPark), and
the Morris K. Udall Centers for Parkinson’s Research (Udall).
The 4 cohorts from randomized clinical trials were Deprenyl
and Tocopherol Antioxidative Therapy of Parkinsonism
(DATATOP), NIH Exploratory Trials in Parkinson’s Disease
Large Simple Study 1, ParkFit study (ParkFit), and Parkinson
Research Examination of CEP-1347 Trial with a subsequent
prospective study (PreCEPT/PostCEPT). Information on
these cohorts can be found in appendix e-1 (links.lww.com/
NXG/A169). Subsets of participants from the cohorts who
provided DNA and were nonrelated participants with PD,
diagnosed at age 18 years or later, and of European ancestry
were included in the study. Participants’ information and
genetic samples were obtained under appropriate written
consent and with local institutional and ethical approvals.

Genotyping SNPs and calculation of GRS
Oslo samples were genotyped on the Illumina Infinium
OmniExpress array, DIGPD samples were genotyped by
Illumina Multi-Ethnic Genotyping Array, and all other sam-
ples were genotyped on the NeuroX array.8 The quality
control process of variant calling included GenTrain score
<0.7, minor allele frequency (MAF) >0.05 (for sample quality
control but not in our analysis of rare risk factors), and Hardy-
Weinberg equilibrium test statistic >10−6. Sample-specific
quality control included a sample call rate of >0.95, confir-
mation of sex through genotyping, homozygosity quantified
by F within ± 3 SD from the population mean, European
ancestry confirmed by principal-components analysis with
1000 Genomes data as the reference, and genetic relatedness
of any 2 individuals <0.125. Detailed information regarding
NeuroX and the quality control process has been described
previously.9 In the present study, we investigated 31 single
nucleotide polymorphisms (SNPs) previously shown to be
significantly associated with Parkinson disease.10–12 In addi-
tion, we also calculated a GRS for each participant based on
these variants. The scores were transformed into Z-scores
within each cohort and treated as an exposure, with effect
estimates based on 1 SD change from the population mean.
The list of 31 SNPs and the GRS calculation method are
provided in table e-1 (links.lww.com/NXG/A170).

Furthermore, principal components (PCs) were created for
each data set from genotypes using PLINK. For the PC calcu-
lation, variants were filtered for MAF (>0.05), genotype miss-
ingness (<0.05), and Hardy-Weinberg equilibrium (p ≥ 10−5).

Glossary
ESS = Epworth Sleepiness Scale; FDR = false discovery rate; GRS = genetic risk score; GWAS = genome-wide association
study; HR = hazard ratio; HY = Hoehn and Yahr scale; MAF = minor allele frequency; MDS = Movement Disorder Society;
MMSE = Mini-Mental State Examination; MoCA = Montreal Cognitive Assessment; MSQ = Mayo Sleep Questionnaire;
NMS = nonmotor symptom; OR = odds ratio; PC = principal component; PDSS = Parkinson’s Disease Sleep Scale; PPMI =
Parkinson’s Progression Markers Initiative; RBD = rapid eye movement sleep behavior disorder; RBDSQ = RBD Screening
Questionnaire;RLS = restless legs syndrome; SEADL = Schwab and England Activities of Daily Living Scale;UPDRS =Unified
Parkinson’s Disease Rating Scale.

2 Neurology: Genetics | Volume 5, Number 4 | August 2019 Neurology.org/NG

http://links.lww.com/NXG/A169
http://links.lww.com/NXG/A169
http://links.lww.com/NXG/A170
http://neurology.org/ng


The remaining variants were pruned (using a 50-kb window,
with a 5 SNP shift per window and r2 threshold of 0.5), and PCs
were calculated using the pruned variants.

Measurements
The following clinicalmeasurements and binomial outcomeswere
recorded longitudinally (table e-2 links.lww.com/NXG/A171):
total and subscores of the Unified Parkinson’s Disease Rating
Scale (UPDRS) or the Movement Disorder Society revised
UPDRS version (MDS-UPDRS); modified Hoehn and Yahr
scales (HY); modified Schwab and England Activities of Daily
Living Scale; and scores for the Mini-Mental State Examination
(MMSE), The SCales for Outcomes in PArkinson's disease
(SCOPA)-Cognition, and Montreal Cognitive Assessment
(MoCA). Each was treated as a continuous outcome. For the
UPDRS and MDS-UPDRS scores specifically, we took Z-scores
of the total and subscores (except for part 4 at baseline) to
compare the original and revised UPDRS versions. The conver-
sionwas applied to the scores for all subsequent visits. ForUPDRS
part 4,most participants had very low scores or 0 at baseline, sowe
normalized across all observations within each cohort. We also
analyzed binomial outcomes. If we had access to the raw data, we
used common cutoff values, which had been tested and reported
specificity of 85% or more in patients’ population. The binomial
outcomes include existence of family history (1st-degree relative.
1st- and 2nd-degree relatives in HBS, PreCEPT, ProPark, and
Udall), hyposmia (University of Pennsylvania Smell Identification
Test < 21,13 or answering “yes” to question 2 in the NMS ques-
tionnaire), cognitive impairment (SCOPA-Cognition < 23,
MMSE < 27, or MoCA < 24,14,15 or diagnosed with The
Diagnostic and StatisticalManual ofMental Disorders -IV criteria for
dementia), wearing off (UPDRS/MDS-UPDRSpart 4 off time>0
or physician’s diagnosis), dyskinesia (UPDRS/MDS-UPDRS part
4 dyskinesia time >0 or physician’s diagnosis), depression (Beck
Depression Inventory > 14 [PICNICS used 9 instead of 14],
HamiltonDepression Rating Scale >9, Geriatric Depression Scale
[GRS] > 5,16 or physician’s diagnosis), constipation (MDS-
UPDRS part 1 item 11 > 0, or answering “yes” to question 5 in
the NMS questionnaire), excessive daytime sleepiness (Epworth
sleepiness scale > 9,17 insomnia [MDS-UPDRS part 1, item 7 >
0], rapid eye movement sleep behavior disorder [RBD]) (an-
swered “yes” to question 1 on the Mayo Sleep Questionnaire
[MSQ],18 or RBD screening questionnaire [RBDSQ >5],19

restless legs syndrome [RLS]) (answered “yes” to MSQ ques-
tion 3,20 or RLS diagnosis positive by RBDSQ), and the pro-
gression to HY ≥ 3 (HY3, representing moderate to severe
disease). The individual definitions of these binomial outcomes
are summarized in table e-2 (links.lww.com/NXG/A171). Age,
sex, years of education, age at motor symptom onset, and
whether the patient was treated with levodopa or dopamine
agonists at each visit were also recorded for adjustments.

Statistical analysis

Cohort-level analysis
We analyzed the association between exposures and out-
comes using appropriate additive models. Covariates of in-
terest were not available for all cohorts; therefore, the model

specifications were slightly different between cohorts (de-
tailed in table e-3, links.lww.com/NXG/A172). Briefly, the
associations between an SNP/GRS and age at onset were
analyzed by linear regression modeling adjusting for pop-
ulation stratification (PC1 and PC2). The association be-
tween family history of Parkinson disease and SNP/GRS was
analyzed with a logistic regression model adjusting for PC1/2.
For continuous variables, linear regressionmodeling adjusting
for sex, education, PC1/2, age at onset, years from diagnosis,
family history, and treatment status was applied. For those
who had multiple observations, random intercept was added
to adjust for repeated measurements of the same individual.
For binomial outcomes, the logistic regression at baseline
observation was applied using the same covariates as the
continuous models. Those that were negative at baseline were
further analyzed by a Cox regression with the same covariates
but with treatment status as a time-varying covariate. Obser-
vations with missing variables were excluded from the analyses.

Meta-analysis
We applied inverse weighting (precision method) for each
combination of outcome-predictor association and combined
the estimates from the 13 different cohorts in a fixed effect
model. Multiple test correction for SNPs was controlled with
an overall false discovery rate (FDR) of 0.05 per outcome
being considered significant. Similarly, multiple testing of
outcomes for GRS was corrected with an FDR of 0.05, but
across all traits. In addition, as a test of homogeneity, I2 indices
and forest plots were used for quantitative assessment. As
a sensitivity analysis, we conducted up to 13 iterations of the
meta-analyses for the 12 cohorts excluding each cohort per
iteration. This analysis provides information regarding het-
erogeneity of the cohorts and how one specific cohort ex-
clusion affects the results. The range of estimates and
maximum p values for the iterations were included. Finally, we
conducted the 13-cohort meta-analysis in a random effects
model with restricted maximum likelihood estimation using
the same multiple testing correction.

All the above analyses were conducted with PLINK version 1.9,
and R version 3.4.4 (64-bit). Statistical tests were all 2 sided.

Data availability
Qualified investigators can request raw data through the
organizations’ homepages (PDBP: pdbp.ninds.nih.gov/,
PPMI: ppmi-info.org/) or collaboration.

Results
A total of 23,423 visits by 4,307 patients with a median follow-
up period of 2.97 years (quartile range of [1.63–4.94] years)
were eligible for the analysis. The baseline characteristics of
the cohorts are shown in table 1. The mean ages at onset
varied from 54 to 69 years; the average disease durations at
cohort entry ranged from less than 1 to 10 years, and themean
observation periods were between 1.2 and 6.8 years. All
DATATOP, ParkWest, PPMI, and PreCEPT participants
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Table 1 Summary characteristics of 13 cohorts

DATATOP DIGPD HBS
NET-PD
LS1 Oslo ParkFit ParkWest PDBP PICNICS PPMI

PreCEPT/
PostCEPT ProPark Udall

Cohort size, n 440 311 580 406 317 335 150 422 120 357 321 296 252

Follow-up
duration, y

1.22 (0.41) 2.19 (1.51) 1.53 (0.87) 4.48 (1.45) 4.64 (3.10) 1.97 (0.00) 3.04 (0.09) 2.06 (1.70) 3.04 (1.63) 4.87 (1.35) 6.79 (0.95) 4.62 (1.14) 3.77 (1.81)

Female, n (%) 146 (33.2) 121 (38.9) 201 (34.7) 148 (36.5) 107 (33.8) 110 (32.8) 57 (38.0) 174 (41.2) 43 (35.8) 121 (33.9) 106 (33.0) 105 (35.5) 73 (29.0)

Family history,
n (%)

86 (20.9) 69 (22.3) 148 (25.5) 59 (14.5) 43 (14.0) — 17 (11.3) 54 (12.8) 19 (15.8) 48 (13.5) 93 (29.2) 76 (25.9) 71 (28.4)

Age at onset, y 58.65 (9.17) 59.41 (9.80) 62.16 (10.46) 60.64 (9.45) 54.33 (10.06) 60.79 (8.65) 67.27 (9.26) 58.51 (10.28) 68.94 (9.34) 61.45 (9.55) 59.47 (9.22) 53.14 (10.60) 64.26 (8.64)

Baseline from
diagnosis, y

1.14 (1.17) 2.60 (1.57) 4.09 (4.63) 1.50 (1.00) 10.13 (6.04) 5.18 (4.44) 0.13 (0.12) 5.68 (5.64) 0.23 (0.48) 0.54 (0.54) 0.80 (0.83) 6.56 (4.67) 6.21 (5.38)

Levodopa use,
n (%)

0 (0.0) 198 (63.9) 415 (71.6) 207 (51.2) — — 0 (0.0) 255 (60.4) 36 (30.0) 0 (0.0) 0 (0.0) 202 (68.2) 215 (85.3)

Dopamine
agonist use, n (%)

0 (0.0) 228 (73.3) 224 (38.6) 280 (69.3) — — 0 (0.0) 61 (14.5) 22 (18.3) 0 (0.0) 1 (0.3) 222 (75.0) 118 (46.8)

Modified HY 1.61 (0.53) 1.75 (0.55) 2.14 (0.64) — 2.19 (0.64) 2.08 (0.33) 1.86 (0.58) 2.04 (0.69) 1.64 (0.67) 1.55 (0.50) 1.75 (0.48) 2.51 (0.79) 2.29 (0.68)

UPDRS1 — 7.69 (4.50) 1.70 (1.59) 1.31 (1.45) — — 1.95 (1.76) 9.90 (6.11) — 5.40 (3.97) 0.84 (1.19) — 1.92 (1.99)

UPDRS2 — 7.72 (4.66) 9.21 (5.23) 7.29 (3.86) — — 8.19 (4.22) 11.14 (8.01) — 5.80 (4.11) 6.11 (3.20) — 10.74 (7.13)

UPDRS3 — 20.37 (10.23) 19.30 (9.58) 17.77 (8.32) 15.42 (10.30) — 22.09 (9.77) 23.64 (13.08) — 20.88 (9.00) 18.69 (7.65) — 22.92 (11.09)

UPDRS4 — 0.66 (2.56) 2.25 (2.05) 1.34 (1.49) — — 0.57 (1.14) 2.20 (3.17) — — — — 2.02 (2.75)

MDS_UPDRS total — 36.43 (16.02) — — — — — 46.88 (24.04) 47.27 (17.97) — — — —

UPDRS total 24.68 (11.56) — 32.33 (14.28) 27.67 (11.62) — 32.11 (10.10) 32.79 (13.91) — — — 25.39 (10.10) — 32.64 (18.28)

MMSE 28.99 (1.35) 28.38 (1.73) 28.35 (2.17) — — 28.09 (1.61) 27.88 (2.27) — 28.71 (1.43) — 29.29 (1.07) 27.05 (2.50) 26.83 (3.50)

MoCA — — — — — — — 25.44 (3.40) — 27.17 (2.23) — — 24.37 (3.63)

SEADL 91.55 (6.49) 80.55 (29.02) — 91.59 (6.06) — — 89.40 (7.35) 85.11 (13.10) — 93.18 (5.91) 92.77 (5.26) — 80.53 (17.56)

Hyposmia, n (%) — 89 (28.9) — — — — 54 (36.0) 276 (65.4) — 164 (45.9) — 173 (63.8) 69 (67.0)

Cognitive
impairment, n (%)

26 (5.9) 3 (1.0) 74 (13.0) 29 (7.1) — 55 (16.4) 27 (18.0) 96 (22.7) 11 (9.2) 28 (7.8) 3 (0.9) 77 (27.0) 29 (11.5)

Motor
fluctuation, n (%)

— 40 (12.9) 228 (39.9) 103 (25.4) — — 4 (2.7) 129 (48.1) 1 (0.8) — — 94 (32.4) 75 (35.4)

Dyskinesia, n (%) 4 (0.9) 13 (4.2) 207 (36.2) 5 (1.2) — — 2 (1.3) 196 (46.4) 0 (0.0) — — 81 (27.6) 44 (22.8)
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were dopaminergic therapy naive at baseline; patients in the
other cohorts were not. In the primary analysis of 13 cohorts,
17 associations were identified as significant after FDR cor-
rection (table 2, and more information in table e-4, links.lww.
com/NXG/A173). Overwhelmingly, 10 were associated with
GBA variants. In particular, GBA p.E365K (rs2230288) was
associated with 2.37- (1.53–3.66) (95% CI) fold higher odds
of having cognitive impairment at baseline (p = 1.09 × 10−4)
and 2.78- (1.88–4.11) fold higher hazard ratio (HR) of de-
veloping cognitive impairment during follow-up among those
who were negative for cognitive impairment at baseline (p =
2.97 × 10−7). This SNPwas also associated with a higher mean
on the HY at 0.10 (0.04–0.16) (p = 1.53 × 10−3), but the test
of homogeneity was rejected (p= 0.017, I2 = 48.9%). In addition,
it was associated with the development of an RBD among those
who did not have the disorder at baseline. OtherGBAmutations,
p.N370S (rs767763715) and p.T408M (rs75548401), were
both associated with a higher HR of reaching HY3 (4.59
[2.60–8.10] for p.N370S [p = 1.58 × 10−7] and 1.93 [1.34–2.78]
for p.T408M [p = 4.40 × 10−4]). GBA p.N370N was also as-
sociated with a higher risk of developing wearing-off, dyskinesia,
and daytime sleepiness. p.T408M was associated with a 6.48
(2.04–20.60) times higher odds ratio (OR) of having an RBD
symptom at baseline (p = 1.53 × 10−3).

Two LRRK2 variants in our 31 SNPs of interest were signifi-
cantly associated with outcomes. LRRK2 p.G2019S
(rs34637584) was associated with higher odds of having a family
history of Parkinson disease (OR 3.54 [1.72–7.29], p = 6.06 ×
10−4), and the T allele of rs76904798 (intergenic at the 59 end of
LRRK2) was associated with a higher HR of reaching HY3 (HR
1.33 [1.16–1.52] for the T allele, p = 5.27 × 10−5).

Age at onset was inversely associated with theZ value of the GRS
(−0.60 [−0.89 to −0.31] years per +1 SD, p = 5.33 × 10−5).
Moreover, it was associated with rs34311866 (TMEM175
p.M393T), theC allele of rs199347 (intronic region ofGPNMB),
and the G allele of rs1106180 (intronic region of CCDC62).

The majority (14/17) of associations showed good accord
across cohorts (I2 < 50%), and the forest plots (figures 1–3) also
illustrate this qualitatively. Furthermore, up to 13 iterations of the
leave-one-out analysis assessed 15 associations of which out-
comes were measured in more than 2 cohorts and showed
a small range of betas. Themaximum p value of 13 iterations was
less than 0.05 for all associations except for rs114138769 (intron
of PMVK) and rs76763715 (GBA p.N370S) for wearing-off. A
meta-analysis with a random effect model also detected 9 asso-
ciations after the same FDR correction, although the model is
more conservative than a fixed model.

Discussion
We conducted a meta-analysis with 13 longitudinal patient
cohorts and identified multiple associations between geno-
types and clinical phenotypic characteristics, includingTa
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Table 2 Meta-analysis for 13 cohorts and the results of sensitivity analysis

Outcome rsNo

Known gene
or nearest
gene

No. of
cohorts

Scale of the
effect

Fixed effect model

Test of
homogeneity I2 (%)

Leave-one-out analysis Random effect model

Estimate (95% CI) p
Estimate (Min to
Max) Max p Estimate (95% CI) p

Wearing-off rs114138760 intron_PMVK 9 Multiplicative (HR) 1.66 (1.19 to 2.31) 2.62E-03 0.322 12.58 1.66 (1.44 to 1.81) 6.22E-02 1.65 (1.14 to 2.38) 7.39E-03

Dyskinesia rs76763715 GBA:N370S 8 Multiplicative (HR) 3.01 (1.81 to 5.01) 2.17E-05 0.011 60.53 3.00 (1.98 to 4.05) 2.26E-02 2.49 (1.06 to 5.86) 3.73E-02

HY ≥ 3.0 rs76763715 GBA:N370S 6 Multiplicative (HR) 4.59 (2.60 to 8.10) 1.58E-07 0.654 0.00 4.59 (4.02 to 5.41) 2.00E-05 4.59 (2.60 to 8.10) 1.58E-07a

Wearing-off rs76763715 GBA:N370S 6 Multiplicative (HR) 2.03 (1.28 to 3.21) 2.56E-03 0.021 62.70 2.02 (1.61 to 2.65) 8.67E-02 1.92 (0.85 to 4.33) 1.14E-01

Daytime
sleepiness

rs76763715 GBA:N370S 6 Multiplicative (HR) 3.28 (1.69 to 6.34) 4.24E-04 0.467 0.00 3.30 (2.85 to 4.38) 3.75E-03 3.28 (1.69 to 6.34) 4.24E-04a

HY ≥ 3.0 rs75548401 GBA:T408M 8 Multiplicative (HR) 1.93 (1.34 to 2.78) 4.40E-04 0.208 32.43 1.93 (1.70 to 2.41) 1.08E-02 1.96 (1.22 to 3.14) 5.22E-03

pRBD (baseline) rs75548401 GBA:T408M 2 Multiplicative (OR) 6.48 (2.04 to 20.60) 1.53E-03 0.118 59.06 — — 6.25 (1.02 to 38.20) 4.72E-02

HY rs2230288 GBA:E365K 12 Continuous 0.10 (0.04 to 0.16) 1.53E-03 0.017 48.90 0.10 (0.08 to 0.11) 1.02E-02 0.11 (0.02 to 0.21) 1.88E-02

Cognitive
impairment
(baseline)

rs2230288 GBA:E365K 8 Multiplicative (OR) 2.37 (1.53 to 3.66) 1.09E-04 0.794 0.00 2.37 (2.20 to 2.59) 8.57E-04 2.37 (1.53 to 3.66) 1.09E-04a

Cognitive
impairment

rs2230288 GBA:E365K 9 Multiplicative (HR) 2.78 (1.88 to 4.11) 2.97E-07 0.555 0.00 2.78 (2.41 to 2.98) 5.08E-05 2.78 (1.88 to 4.11) 2.97E-07a

pRBD rs2230288 GBA:E365K 2 Multiplicative (HR) 2.57 (1.43 to 4.63) 1.69E-03 0.665 0.00 — — 2.57 (1.43 to 4.63) 1.69E-03a

Age at onset rs34311866 TMEM175:
M393T

13 Continuous −0.72 (−1.21 to −0.23) 3.87E-03 0.515 0.00 −0.72 (−0.83 to −0.58) 2.83E-02 −0.72 (−1.21 to −0.23)

Age at onset rs199347 intron_GPNMB 12 Continuous 0.70 (0.27 to 1.14) 1.42E-03 0.824 0.00 0.70 (0.60 to 0.77) 1.12E-02 0.70 (0.27 to 1.14) 1.42E-03a

HY ≥ 3.0 rs76904798 5_LRRK2 13 Multiplicative (HR) 1.33 (1.16 to 1.52) 5.27E-05 0.049 43.15 1.33 (1.26 to 1.43) 1.64E-03 1.34 (1.11 to 1.63) 2.80E-03a

Family history rs34637584 LRRK2:G2019S 8 Multiplicative (OR) 3.54 (1.72 to 7.29) 6.06E-04 0.856 0.00 3.53 (2.78 to 3.98) 1.66E-02 3.54 (1.72 to 7.29) 6.06E-04a

Age at onset rs11060180 intron_CCDC62 13 Continuous 0.62 (0.21 to 1.03) 3.32E-03 0.054 42.60 0.62 (0.49 to 0.75) 2.74E-02 0.55 (−0.00 to 1.11) 5.14E-02

Age at onset GRS 13 Continuous −0.60 (−0.89, −0.31) 5.33E-05 0.749 0.00 −0.60 (−0.65, −0.52) 9.02E-04 −0.60 (−0.89, −0.31) 5.33E-05a

Abbreviations: FDR = false discovery rate; GRS = genetic risk score; HR = hazard ratio; HY = Hoehn and Yahr scale; OR = odds ratio; pRBD = possible REM sleep behavior disorder.
pRBD was only available in 2 cohorts and a leave-one-out analysis was not conducted for this outcome.
a Significant after FDR adjustment in a random effect model.
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progression rates. Among these, GBA coding variants showed
clear associations with the rate of cognitive decline (binomial
outcome or UPDRS part 1 score) and motor symptom pro-
gression (HY, HY3), consistent with previous studies.12,21–25

In addition, we found associations between GBA variants and
RBD and daytime sleepiness. A previous cross-sectional study
with 120 Ashkenazi-Jewish patients reported a higher frequency
of RBDSQ-detected RBD symptoms in GBA variant carriers.26

Figure 1 Forest plots for GBA (p.N370S and p.T408M) variants and symptoms of Parkinson disease

DATATOP = Deprenyl and Tocopherol Antioxidative Therapy of Parkinsonism; DIGPD = Drug Interaction with Genes in Parkinson’s Disease; HBS = Harvard
Biomarkers Study; NET-PD_LS1 =NIH Exploratory Trials in Parkinson’s Disease Large Simple Study 1; Oslo =Oslo PD study; ParkFit = ParkFit study; ParkWest =
the Norwegian ParkWest study; PDBP = Parkinson’s Disease Biomarker Program; PICNICS = Parkinsonism: Incidence and Cognitive and Non-motor het-
erogeneity In CambridgeShire; PPMI = Parkinson’s Progression Markers Initiative; PreCEPT/PostCEPT = Parkinson Research Examination of CEP-1347 Trial
with a subsequent prospective study; ProPark = Profiling Parkinson’s Disease study; Udall = Morris K. Udall Centers for Parkinson’s Research. * Indicates Beta
in a Cox model; ** indicates Beta in a logistic model at baseline.
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Our finding suggests that GBA is associated not only with
baseline clinical presentation but also with disease progression.

An association between GBA and daytime sleepiness has been
rarely documented. One study reported an association between
sleep problems (as assessed by the Parkinson’s Disease Sleep
Scale) andGBA.27 However, this scale is a combined measure of
daytime sleepiness and other aspects of sleep problems.

Finally, a GBA variant (p.N370S) was also associated with
treatment-related complications of wearing-off and dyskine-
sia. Two studies have reported the association ofGBA variants
with these complications, with 1 positive and 1 negative
result.28,29 The negative result may be due to insufficient
power with only 19 patients with GBA mutations.

Overall, our study provides a distinct clinical profile of
patients with GBA variants compared with those without. We

note that with 63 carriers for p.N370S, 166 for p.T408M, and
217 for p.E365K, we have a reasonable power, but the number
is yet not enough. And this may affect the results in seemingly
different magnitudes of associations and the association for
different traits per variants (e.g., motor complications with
p.N370S and cognitive impairment with p.E365K). Another
possible explanation is that although the effects are associated
with the same gene, the biological activity or molecular
mechanism could be different. Such an example has already
been reported for LRRK2 p.G2019S and p.G2385R.30

Aside from GBA variants, the associations between close
intergenic (59_end) variant of LRRK2, rs76904798, and the
faster development of motor symptom, and the intronic re-
gion variant of PMVK, rs114138760, and the development of
wearing-off, were significant. This variant is 4.3 kb upstream
from the 59 end of LRRK2 and reported to be associated with
LRRK2 gene expression changes in recent blood cis-

Figure 2 Forest plots for GBA (p.E365K) variants and symptoms of Parkinson disease

DATATOP = Deprenyl and Tocopherol Antioxidative Therapy of Parkinsonism; DIGPD = Drug Interaction with Genes in Parkinson’s Disease; HBS = Harvard
Biomarkers Study; NET-PD_LS1 =NIH Exploratory Trials in Parkinson’s Disease Large Simple Study 1; Oslo =Oslo PD study; ParkFit = ParkFit study; ParkWest =
the Norwegian ParkWest study; PDBP = Parkinson’s Disease Biomarker Program; PICNICS = Parkinsonism: Incidence and Cognitive and Non-motor het-
erogeneity In CambridgeShire; PPMI = Parkinson’s Progression Markers Initiative; PreCEPT/PostCEPT = Parkinson Research Examination of CEP-1347 Trial
with a subsequent prospective study; ProPark = Profiling Parkinson’s Disease study; Udall = Morris K. Udall Centers for Parkinson’s Research. * Indicates Beta
in a Cox model; ** indicates Beta in a logistic model at baseline; *** indicates Beta in a linear mixed model.
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expression quantitative trait loci (eQTL) study from the
eQTLGen Consortium.31 In contrast, we did not find an as-
sociation between rs34637584, LRRK2 coding mutation
(p.G2019S) and motor progression. The p.G2019 variant is
a rare variant (MAF 0.5% in our study), and our sample size
was not adequate barring an extremely large effect size. The
intronic region variant of PMVK, rs114138760, and the de-
velopment of wearing-off was another finding. The biological
effect of PMVK on PD has not been reported, but the variant
is also located at close proximity of theGBA-SYT11 locus, so it

is possible that its association was through a similar mechanism
as GBA. Including the results of cross-sectional analysis, the
associations of age at onset with rs34311866 (TMEM175,
p.M393T), rs199347 (intron of GPNMB), and rs11060180
(intron of CCDC62) were found. TMEM175 has been repor-
ted to impair lysosomal and mitochondrial function and in-
crease α-synuclein aggregation,32 although no functional data
for this missense variant were studied. Of interest, the variant
has recently been reported in another study as being associated
with the age at onset.33 rs199347 is an eQTL increasing the

Figure 3 Forest plots for non-GBA risk variants/genetic risk score and symptoms or features of Parkinson disease

DATATOP = Deprenyl and Tocopherol Antioxidative Therapy of Parkinsonism; DIGPD = Drug Interaction with Genes in Parkinson’s Disease; HBS = Harvard
Biomarkers Study; NET-PD_LS1 = NIH Exploratory Trials in Parkinson’s Disease Large Simple Study 1; Oslo = oslo PD study; ParkFit = ParkFit study; ParkWest =
the Norwegian ParkWest study; PDBP = Parkinson’s Disease Biomarker Program; PICNICS = Parkinsonism: Incidence and Cognitive and Non-motor het-
erogeneity In CambridgeShire; PPMI = Parkinson’s Progression Markers Initiative; PreCEPT/PostCEPT = Parkinson Research Examination of CEP-1347 Trial
with a subsequent prospective study; ProPark = Profiling Parkinson’s Disease study; Udall = Morris K. Udall Centers for Parkinson’s Research. * Indicates Beta
in a Cox model; ** indicates Beta in a logistic model at baseline; *** indicates Beta in a linear mixed model.
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brain expression of GPNMB,34 suggesting a causal link. Re-
garding rs1160180, no functional data are available in this locus.

We also evaluated the association between genetic risk var-
iants and clinical outcomes by 2-step meta-analysis. This
analysis is exploratory, and we acknowledge that this is biased
toward the null due to power issues when partitioning studies
randomly. However, we believe that it is helpful to assess the
rigorousness of the associations we found in the primary
analysis and to explore potential missed associations.

A strength of the current study was its design, incorporating
multiple distinct independent Parkinson disease cohorts with
longitudinal follow-ups. Although the cohorts contained
patients at different disease stages, and some of the definition
of outcomes were not identical, we analyzed each cohort
separately and combined the results. Thus, the significant
findings are consistent and applicable to the wider Parkinson
disease populations. The forest plots showed that most of the
estimates agree with each other despite the relative differences
in the cohort characteristics. Another strength is the size of the
study. The total number of genotyped and phenotyped
patients with Parkinson disease (N = 4,307) is one of the
largest to date for an investigation of disease progression.

The limitations of our study were as follows. First, we only
included patients of European ancestry. It is uncertain whether
the associations in the current study are also applicable to people
from different ethnic backgrounds and further research is
needed. Second, the current analysis could not distinguish cau-
sality, only basic associations. Different approaches, such as
molecular-level assessment and Mendelian randomization, are
crucial. Third, interaction effects between genes and other factors
are another important research target not addressed in this re-
port because of power constraints. For example, gene-by-
smoking interactions for Parkinson disease were indicated re-
cently35 and highlight the importance of correctly modeling
gene-environment interactions. Finally, compared with the typ-
ical GWAS analysis (which includes tens of thousands of cases),
the number of participants was small, and the outcomes of in-
terest were not as simple or easily defined as with case-control
distinctions in GWAS. Acknowledging the limitations, the list of
associations provided here is valuable as a foundation for further
studies and as an example that illustrates the potential of efforts
to define the genetic basis of variability in presentation and
course. Accounting for this variability, even in part, has the po-
tential to positively affect etiology-based clinical trials by re-
ducing variability between placebo and treatment groups and by
providing better predictions of expected individual progression.
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CORRECTION

Genetic risk of Parkinson disease and progression: An analysis of 13
longitudinal cohorts
Neurol Genet 2019;5:e354. doi:10.1212/NXG.0000000000000354

In the article “Genetic risk of Parkinson disease and progression: An analysis of 13 longitudinal
cohorts" by Iwaki et al.,1 first published online July 9, 2019, in the abstract’s results, the phrase
should be “T allele of rs114128760.” The authors regret the error.
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