127 research outputs found

    Concurrent validity of a touchscreen application to detect early cognitive delay

    Get PDF
    OBJECTIVE: To explore the ability of an interactive screening tool to identify cognitive delay in children aged 18 to 24 months. DESIGN: Children were assessed using the Bayley Scale of Infant and Toddler Development-third edition (BSID-III) and a touchscreen measure of problem-solving (Babyscreen V.1.5). We examined the internal consistency and concurrent validity between the two measures. A BSID-III cognitive composite score (BSID-IIIcc) ≤1 SD below population mean was used to indicate a low average cognitive ability. RESULTS: 87 children with a mean (SD) age of 20.4 (1.3) months who experienced complications at delivery (n=53) and healthy age-matched controls (n=34) were included in the study. A moderate positive correlation between the BSID-IIIcc and the total number of tasks completed on the Babyscreen suggested reasonable concurrent validity (r=0.414, p90 (-1.08 (-1.5 to -0.46) vs 0.31 (-0.46 to 0.76); p=0.001). The area under the receiver operating characteristic curve for the prediction of a low normal BSID-IIIcc was 0.787 (CI 0.64 to 0.93). A BST z-score of <-0.44 yielded 82.4% sensitivity and 71.4% specificity in identifying children with cognitive delay. CONCLUSIONS: A touchscreen-based application has concurrent validity with the BSID-IIIcc and could be used to screen for cognitive delay at 18-24 months of age

    Feasibility of using touch screen technology for early cognitive assessment in children

    Get PDF
    OBJECTIVES: To explore the feasibility of using a touch screen assessment tool to measure cognitive capacity in toddlers. DESIGN: 112 typically developing children with a median age of 31 months (IQR: 26–34) interacted with a touch screen cognitive assessment tool. We examined the sensitivity of the tool to age-related changes in cognition by comparing the number of items completed, speed of task completion and accuracy in two age groups; 24–29 months versus 30–36 months. RESULTS: Children aged 30–36 months completed more tasks (median: 18, IQR: 18–18) than those aged 24–29 months (median: 17, IQR: 15–18). Older children also completed two of the three working memory tasks and an object permanence task faster than their younger peers. Children became faster at completing the working memory items with each exposure and registered similar completion times on the hidden object retrieval items, despite task demands being twofold on the second exposure. A novel item required children to integrate what they had learnt on preceding items. The older group was more likely to complete this item and to do so faster than the younger group. CONCLUSIONS: Children as young as 24 months can complete items requiring cognitive engagement on a touch screen device, with no verbal instruction and minimal child–administrator interaction. This paves the way for using touch screen technology for language and administrator independent developmental assessment in toddlers

    The influence of gravimetric moisture content on studded shoe–surface interactions in soccer

    Get PDF
    It is desirable for the studs of a soccer shoe to penetrate the sport surface and provide the player with sufficient traction when accelerating. Mechanical tests are often used to measure the traction of shoe–surface combinations. Mechanical testing offers a repeatable measure of shoe–surface traction, eliminating the inherent uncertainties that exist when human participant testing is employed, and are hence used to directly compare the performance of shoe–surface combinations. However, the influence specific surface characteristics has on traction is often overlooked. Examining the influence of surface characteristics on mechanical test results improves the understanding of the traction mechanisms at the shoe–surface interface. This allows footwear developers to make informed decisions on the design of studded outsoles. The aim of this paper is to understand the effect gravimetric moisture content has on the tribological mechanisms at play during stud–surface interaction. This study investigates the relationships between: the gravimetric moisture content of a natural sand-based soccer surface; surface stiffness measured via a bespoke impact test device; and surface traction measured via a bespoke mechanical test device. Regression analysis revealed that surface stiffness decreases linearly with increased gravimetric moisture content (p = 0.04). Traction was found to initially increase and then decrease with gravimetric moisture content. It was observed that: a surface of low moisture content provides low stud penetration and therefore reduced traction; a surface of high moisture content provides high stud penetration but also reduced traction due to a lubricating effect; and surfaces with moisture content in between the two extremes provide increased traction. In this study a standard commercially available stud was used and other studs may provide slightly different results. The results provide insight into the traction mechanisms at the stud–surface interface which are described in the paper. The variation between traction measurements shows the influence gravimetric moisture content will have on player performance. This highlights the requirement to understand surface conditions prior to making comparative shoe–surface traction studies and the importance of using a studded outsole that is appropriate to the surface condition during play

    The EEG signature of sensory evidence accumulation during decision formation closely tracks subjective perceptual experience

    Get PDF
    How neural representations of low-level visual information are accessed by higher-order processes to inform decisions and give rise to conscious experience is a longstanding question. Research on perceptual decision making has revealed a late event-related EEG potential (the Centro-Parietal Positivity, CPP) to be a correlate of the accumulation of sensory evidence. We tested how this evidence accumulation signal relates to externally presented (physical) and internally experienced (subjective) sensory evidence. Our results show that the known relationship between the physical strength of the external evidence and the evidence accumulation signal (reflected in the CPP amplitude) is mediated by the level of subjective experience of stimulus strength. This shows that the CPP closely tracks the subjective perceptual evidence, over and above the physically presented evidence. We conclude that a remarkably close relationship exists between the evidence accumulation process (i.e. CPP) and subjective perceptual experience, suggesting that neural decision processes and components of conscious experience are tightly linked

    Dimethyl sulfide production: what is the contribution of the coccolithophores?

    Get PDF

    Neural correlates of evidence accumulation during value-based decisions revealed via simultaneous EEG-fMRI

    Get PDF
    Current computational accounts posit that, in simple binary choices, humans accumulate evidence in favour of the different alternatives before committing to a decision. Neural correlates of this accumulating activity have been found during perceptual decisions in parietal and prefrontal cortex; however the source of such activity in value-based choices remains unknown. Here we use simultaneous EEG–fMRI and computational modelling to identify EEG signals reflecting an accumulation process and demonstrate that the within- and across-trial variability in these signals explains fMRI responses in posterior-medial frontal cortex. Consistent with its role in integrating the evidence prior to reaching a decision, this region also exhibits task-dependent coupling with the ventromedial prefrontal cortex and the striatum, brain areas known to encode the subjective value of the decision alternatives. These results further endorse the proposition of an evidence accumulation process during value-based decisions in humans and implicate the posterior-medial frontal cortex in this process

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Reduction of Pavlovian bias in schizophrenia: Enhanced effects in clozapine-administered patients

    Get PDF
    The negative symptoms of schizophrenia (SZ) are associated with a pattern of reinforcement learning (RL) deficits likely related to degraded representations of reward values. However, the RL tasks used to date have required active responses to both reward and punishing stimuli. Pavlovian biases have been shown to affect performance on these tasks through invigoration of action to reward and inhibition of action to punishment, and may be partially responsible for the effects found in patients. Forty-five patients with schizophrenia and 30 demographically-matched controls completed a four-stimulus reinforcement learning task that crossed action ("Go" or "NoGo") and the valence of the optimal outcome (reward or punishment-avoidance), such that all combinations of action and outcome valence were tested. Behaviour was modelled using a six-parameter RL model and EEG was simultaneously recorded. Patients demonstrated a reduction in Pavlovian performance bias that was evident in a reduced Go bias across the full group. In a subset of patients administered clozapine, the reduction in Pavlovian bias was enhanced. The reduction in Pavlovian bias in SZ patients was accompanied by feedback processing differences at the time of the P3a component. The reduced Pavlovian bias in patients is suggested to be due to reduced fidelity in the communication between striatal regions and frontal cortex. It may also partially account for previous findings of poorer "Go-learning" in schizophrenia where "Go" responses or Pavlovian consistent responses are required for optimal performance. An attenuated P3a component dynamic in patients is consistent with a view that deficits in operant learning are due to impairments in adaptively using feedback to update representations of stimulus value
    corecore