120 research outputs found
Resistin-Like Molecule-β Inhibits SGLT-1 Activity and Enhances GLUT2-Dependent Jejunal Glucose Transport
International audienceOBJECTIVE: An increased expression of RELM-beta (resistin-like molecule-beta), a gut-derived hormone, is observed in animal models of insulin resistance/obesity and intestinal inflammation. Intestinal sugar absorption is modulated by dietary environment and hormones/cytokines. The aim of this study was to investigate the effect of RELM-beta on intestinal glucose absorption. RESEARCH DESIGN AND METHODS: Oral glucose tolerance test was performed in mice and rats in the presence and the absence of RELM-beta. The RELM-beta action on glucose transport in rat jejunal sacs, everted rings, and mucosal strips was explored as well as downstream kinases modulating SGLT-1 and GLUT2 glucose transporters. RESULTS: Oral glucose tolerance test carried out in rodents showed that oral administration of RELM-beta increased glycemia. Studies in rat jejunal tissue indicated that mucosal RELM-beta promoted absorption of glucose from the gut lumen. RELM-beta had no effect on paracellular mannitol transport, suggesting a transporter-mediated transcellular mechanism. In studies with jejunal mucosa mounted in Ussing chamber, luminal RELM-beta inhibited SGLT-1 activity in line with a diminished SGLT-1 abundance in brush border membranes (BBMs). Further, the potentiating effect of RELM-beta on jejunal glucose uptake was associated with an increased abundance of GLUT2 at BBMs. The effects of RELM-beta were associated with an increased amount of protein kinase C betaII in BBMs and an increased phosphorylation of AMP-activated protein kinase (AMPK). CONCLUSIONS: The regulation of SGLT-1 and GLUT2 by RELM-beta expands the role of gut hormones in short-term AMPK/protein kinase C mediated control of energy balance
Brain Apolipoprotein E: an Important Regulator of Food Intake in Rats
OBJECTIVE—The worldwide prevalence of obesity is increasing at an alarming rate, along with the associated increased rates of type 2 diabetes, heart disease, and some cancers. While efforts to address environmental factors responsible for the recent epidemic must continue, investigation into the anorectic functions of potential molecules we present here, such as apolipoprotein (apo)E, offers exciting possibilities for future development of successful anti-obesity therapies
MicroRNAs Induced During Adipogenesis that Accelerate Fat Cell Development Are Downregulated in Obesity
OBJECTIVE-- We investigated the regulation and involvement of microRNAs (miRNAs) in fat cell development and obesity. RESEARCH DESIGN AND METHODS- Using miRNA microarrays, we profiled the expression of >370 miRNAs during adipogenesis of preadipocyte 3T3-L1 cells and adipocytes from leptin deficient ob/ob and diet-induced obese mice. Changes in key miRNAs were validated by RT-PCR. We further assessed the contribution of the chronic inflammatory environment in obese adipose tissue to the dysregulated miRNA expression by tumor necrosis factor (TNF)-α treatment of adipocytes. We functionally characterized two adipocyte-enriched miRNAs, miR-103 and miR-143, by a gain-of-function approach. RESULTS--Similar miRNAs were differentially regulated during in vitro and in vivo adipogenesis. Importantly, miRNAs that were induced during adipogenesis were downregulated in adipocytes from both types of obese mice and vice versa. These changes are likely associated with the chronic inflammatory environment, since they were mimicked by TNF-α treatment of differentiated adipocytes. Ectopic expression of miR-103 or miR-143 in preadipocytes accelerated adipogenesis, as measured both by the upregulation of many adipogenesis markers and by an increase in triglyceride accumulation at an early stage of adipogenesis. CONCLUSIONS- Our results provide the first experimental evidence for miR-103 function in adipose biology. The remarkable inverse regulatory pattern for many miRNAs during adipogenesis and obesity has important implications for understanding adipose tissue dysfunction in obese mice and humans and the link between chronic inflammation and obesity with insulin resistance
Altered fasting and postprandial plasma ghrelin levels in patients with liver failure are normalized after liver transplantation
[Abstract]
Context Anorexia is a problem of paramount importance in patients with advanced liver failure. Ghrelin has important actions on feeding and weight homeostasis. Experimental data exist, which suggest that ghrelin could protect hepatic tissue. Both fasting and post-oral glucose tolerance test (OGTT) ghrelin concentrations are controversial in liver cirrhosis and are unknown after liver transplantation.
Objective Our aim was to study fasting ghrelin concentrations and their response to an OGTT in liver failure patients before and after liver transplantation.
Design and methods We included 21 patients with severe liver failure studied before (pretransplantation, PreT) and 6 months after liver transplantation (posttransplantation, PostT), and 10 age- and body mass index-matched healthy or overweight subjects as the control group (Cont). After an overnight fast, 75 g of oral glucose were administered; glucose, insulin, and ghrelin were obtained at baseline and at times 30, 60, 90, and 120 min.
Results Fasting ghrelin (median and range, pg/ml) levels were lower in PreT: 539 (309–1262) than in Cont: 643 (523–2163), P=0.045. Fasting ghrelin levels increased after liver transplantation, 539 (309–1262) vs 910 (426–3305), for PreT and PostT respectively, P=0.001. The area under the curve (AUC) of ghrelin (pg/ml min) was lower in PreT: 63 900 (37 260–148 410) than in Cont: 76 560 (56 160–206 385), P=0.027. The AUC of ghrelin increased in PostT, 63 900 (37 260–148 410) vs 107 595 (59 535–357 465), for PreT and PostT respectively, P=0.001. Fasting levels and the AUC of ghrelin were similar in PosT and Cont.
Conclusions Decreased fasting and post-OGTT ghrelin levels in liver failure patients were normalized after liver transplantation.Instituto de Salud Carlos III; PI051024Instituto de Salud Carlos III; PI070413Xunta de Galicia; PS07/12Galicia. Consellería de Innovación, Industria e Comercio; PGIDT05PXIC91605PNGalicia. Consellería de Economía e Industria; INCITE08ENA916110E
The diagnostic criteria for small fibre neuropathy: from symptoms to neuropathology
Small fibre neuropathy (SFN), a condition dominated by neuropathic pain, is frequently encountered in clinical practise either as prevalent manifestation of more diffuse neuropathy or distinct nosologic entity. Aetiology of SFN includes pre-diabetes status and immune-mediated diseases, though it remains frequently unknown. Due to their physiologic characteristics, small nerve fibres cannot be investigated by routine electrophysiological tests, making the diagnosis particularly difficult. Quantitative sensory testing (QST) to assess the psychophysical thresholds for cold and warm sensations and skin biopsy with quantification of somatic intraepidermal nerve fibres (IENF) have been used to determine the damage to small nerve fibres. Nevertheless, the diagnostic criteria for SFN have not been defined yet and a ‘gold standard’ for clinical practise and research is not available. We screened 486 patients referred to our institutions and collected 124 patients with sensory neuropathy. Among them, we identified 67 patients with pure SFN using a new diagnostic ‘gold standard’, based on the presence of at least two abnormal results at clinical, QST and skin biopsy examination. The diagnosis of SFN was achieved by abnormal clinical and skin biopsy findings in 43.3% of patients, abnormal skin biopsy and QST findings in 37.3% of patients, abnormal clinical and QST findings in 11.9% of patients, whereas 7.5% patients had abnormal results at all the examinations. Skin biopsy showed a diagnostic efficiency of 88.4%, clinical examination of 54.6% and QST of 46.9%. Receiver operating characteristic curve analysis confirmed the significantly higher performance of skin biopsy comparing with QST. However, we found a significant inverse correlation between IENF density and both cold and warm thresholds at the leg. Clinical examination revealed pinprick and thermal hypoesthesia in about 50% patients, and signs of peripheral vascular autonomic dysfunction in about 70% of patients. Spontaneous pain dominated the clinical picture in most SFN patients. Neuropathic pain intensity was more severe in patients with SFN than in patients with large or mixed fibre neuropathy, but there was no significant correlation with IENF density. The aetiology of SFN was initially unknown in 41.8% of patients and at 2-year follow-up a potential cause could be determined in 25% of them. Over the same period, 13% of SFN patients showed the involvement of large nerve fibres, whereas in 45.6% of them the clinical picture did not change. Spontaneous remission of neuropathic pain occurred in 10.9% of SFN patients, while it worsened in 30.4% of them
Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial
Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials.
Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure.
Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen.
Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049
- …