204 research outputs found
Qualification Procedures of the CMS Pixel Barrel Modules
The CMS pixel barrel system will consist of three layers built of about 800
modules. One module contains 66560 readout channels and the full pixel barrel
system about 48 million channels. It is mandatory to test each channel for
functionality, noise level, trimming mechanism, and bump bonding quality.
Different methods to determine the bump bonding yield with electrical
measurements have been developed. Measurements of several operational
parameters are also included in the qualification procedure. Among them are
pixel noise, gains and pedestals. Test and qualification procedures of the
pixel barrel modules are described and some results are presented.Comment: 7 Pages, 7 Figures. Contribution to Pixel 2005, September 5-8, 2005,
Bonn, Germna
Adult reference levels in diagnostic and interventional radiology for temporary use in Switzerland
This work aims at establishing a set of diagnostic reference levels (DRLs) for various types of examinations performed in diagnostic and interventional radiology. The average doses for 257 types of radiological examinations were established during the 1998 nationwide survey on the exposure of the Swiss population by radiodiagnostics. They were calculated using appropriate dosimetric models and average technical parameters. The DRLs were derived from the average doses using a multiplying factor of 1.5. The DRLs obtained were rounded and compared to the data reported in the literature. The results are in most cases comparable to the DRLs determined by the 3rd-quartile method. These discrepancies registered in some cases, particularly for complex examinations, can be explained by significant differences in the protocols and/or the technical parameters used. A set of DRLs is proposed for a large number of examinations to be used in Switzerland as temporary values until a national dosimetric database is set u
Signal height in silicon pixel detectors irradiated with pions and protons
Pixel detectors are used in the innermost part of multi purpose experiments
at the Large Hadron Collider (LHC) and are therefore exposed to the highest
fluences of ionising radiation, which in this part of the detectors consists
mainly of charged pions. The radiation hardness of the detectors has thoroughly
been tested up to the fluences expected at the LHC. In case of an LHC upgrade
the fluence will be much higher and it is not yet clear up to which radii the
present pixel technology can be used. In order to establish such a limit, pixel
sensors of the size of one CMS pixel readout chip (PSI46V2.1) have been bump
bonded and irradiated with positive pions up to 6E14 Neq/cm^2 at PSI and with
protons up to 5E15 Neq/cm^2. The sensors were taken from production wafers of
the CMS barrel pixel detector. They use n-type DOFZ material with a resistance
of about 3.7kOhm cm and an n-side read out. As the performance of silicon
sensors is limited by trapping, the response to a Sr-90 source was
investigated. The highly energetic beta-particles represent a good
approximation to minimum ionising particles. The bias dependence of the signal
for a wide range of fluences will be presented.Comment: Contribution to the 7th International Conference on Radiation Effects
on Semiconductor Materials, Detectors and Devices October 15-17, 2008
Firenze, Ital
Postmetamorphic ontogenetic allometry and the evolution of skull shape in Nest-building frogs Leptodactylus (Anura: Leptodactylidae)
Allometry constitutes an important source of morphological variation. However, its influence in head development in anurans has been poorly explored. By using geometric morphometrics followed by statistical and comparative methods we analyzed patterns of allometric change during cranial postmetamorphic ontogeny in species of Nest-building frogs Leptodactylus (Leptodactylidae). We found that the anuran skull is not a static structure, and allometry plays an important role in defining its shape in this group. Similar to other groups with biphasic life-cycle, and following a general trend in vertebrates, ontogenetic changes mostly involve rearrangement in rostral, otoccipital, and suspensorium regions. Ontogenetic transformations are paralleled by shape changes associated with evolutionary change in size, such that the skulls of species of different intrageneric groups are scaled to each other, and small and large species show patterns of paedomorphic/peramorphic features, respectively. Allometric trajectories producing those phenotypes are highly evolvable though, with shape change direction and magnitude varying widely among clades, and irrespective of changes in absolute body size. These results reinforce the importance of large-scale comparisons of growth patterns to understand the plasticity, evolution, and polarity of morphological changes in different clades.Fil: Duport Bru, Ana Sofía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Ponssa, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Vera Candioti, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; Argentin
Rapid recovery of genetic diversity of stomatopod populations on Krakatau : temporal and spatial scales of marine larval dispersal
Author Posting. © Royal Society, 2002. This article is posted here by permission of Royal Society for personal use, not for redistribution. The definitive version was published in Proceedings of the Royal Society of London B 269 (2002): 1591-1597, doi:10.1098/rspb.2002.2026.Although the recovery of terrestrial communities shattered by the massive eruption of Krakatau in 1883 has been well chronicled, the fate of marine populations has been largely ignored. We examined patterns of genetic diversity in populations of two coral reef-dwelling mantis shrimp, Haptosquilla pulchella and Haptosquilla glyptocercus (Stomatopoda: Protosquillidae) , on the islands of Anak Krakatau and Rakata. Genetic surveys of mitochondrial cytochrome oxidase c (subunit 1) in these populations revealed remarkably high levels of haplotypic and nucleotide diversity that were comparable with undisturbed populations throughout the Indo-Pacific. Recolonization and rapid recovery of genetic diversity in the Krakatau populations indicates that larval dispersal from multiple and diverse source populations contributes substantially to the demographics of local populations over intermediate temporal (tens to hundreds of years) and spatial scales (tens to hundreds of kilometres). Natural experiments such as Krakatau provide an excellent mechanism to investigate marine larval dispersal and connectivity. Results from stomatopods indicate that marine reserves should be spaced no more than 50-100 km apart to facilitate ecological connectivity via larval dispersal.P.H.B. acknowledges support of a NSF Minority
Postdoctoral Fellowship. Research was funded by grants
to S.R.P. A Putnam grant supported fieldwork
Performance and Operation of the CMS Electromagnetic Calorimeter
The operation and general performance of the CMS electromagnetic calorimeter
using cosmic-ray muons are described. These muons were recorded after the
closure of the CMS detector in late 2008. The calorimeter is made of lead
tungstate crystals and the overall status of the 75848 channels corresponding
to the barrel and endcap detectors is reported. The stability of crucial
operational parameters, such as high voltage, temperature and electronic noise,
is summarised and the performance of the light monitoring system is presented
Anurans from the Lower Cretaceous Jehol Group of western Liaoning, China
BACKGROUND: To date, the Lower Cretaceous Jehol Group of western Liaoning, China has yielded five monotypic genera of anurans, including Liaobatrachus grabaui, Callobatrachus sanyanensis, Mesophryne beipiaoensis, Dalianbatrachus mengi, and Yizhoubatrachus macilentus. However, the validity and distinctness of these taxa have been questioned. METHODOLOGY/PRINCIPAL FINDING: We provide a comprehensive analysis of the Jehol frogs that includes a re-examination of the published taxa as well as an examination of a number of new specimens that have been collected over the past 10 years. The results show that the five previously named taxa can be referred to three species of one genus-Liaobatrachus grabaui, L. beipiaoensis comb. nov. and L. macilentus comb. nov.. The diagnosis of Liaobatrachus is revised, and a new diagnosis is provided for each species of this genus. We also establish Liaobatrachus zhaoi sp. nov., on the basis of a dozen well-preserved specimens from a new locality. This taxon is distinguished by a unique combination of characteristics, including relatively long hind limbs, a rounded rather than triangular acetabulum, and a gradually-tapering cultriform process of the parasphenoid. In addition, an unnamed frog from a higher horizon, which has narrow sacral diapophyses and particularly long legs, is different from Liaobatrachus and represents another form of anuran in the Jehol Biota. CONCLUSION/SIGNIFICANCE: Comparisons with other Mesozoic and extant anurans and the primary phylogenetic analysis both suggest that Liaobatrachus is a member of the anuran crown-group and forms a polytomy with leiopelmatids (Ascaphus and Leiopelma) and the remaining crown-group anurans (Lalagobatrachia).Liping Dong, Zbyněk Roček, Yuan Wang, Marc E H. Jone
Reversal to air-driven sound production revealed by a molecular phylogeny of tongueless frogs, family Pipidae
<p>Abstract</p> <p>Background</p> <p>Evolutionary novelties often appear by conferring completely new functions to pre-existing structures or by innovating the mechanism through which a particular function is performed. Sound production plays a central role in the behavior of frogs, which use their calls to delimit territories and attract mates. Therefore, frogs have evolved complex vocal structures capable of producing a wide variety of advertising sounds. It is generally acknowledged that most frogs call by moving an air column from the lungs through the glottis with the remarkable exception of the family Pipidae, whose members share a highly specialized sound production mechanism independent of air movement.</p> <p>Results</p> <p>Here, we performed behavioral observations in the poorly known African pipid genus <it>Pseudhymenochirus </it>and document that the sound production in this aquatic frog is almost certainly air-driven. However, morphological comparisons revealed an indisputable pipid nature of <it>Pseudhymenochirus </it>larynx. To place this paradoxical pattern into an evolutionary framework, we reconstructed robust molecular phylogenies of pipids based on complete mitochondrial genomes and nine nuclear protein-coding genes that coincided in placing <it>Pseudhymenochirus </it>nested among other pipids.</p> <p>Conclusions</p> <p>We conclude that although <it>Pseudhymenochirus </it>probably has evolved a reversal to the ancestral non-pipid condition of air-driven sound production, the mechanism through which it occurs is an evolutionary innovation based on the derived larynx of pipids. This strengthens the idea that evolutionary solutions to functional problems often emerge based on previous structures, and for this reason, innovations largely depend on possibilities and constraints predefined by the particular history of each lineage.</p
A critical appraisal of appendage disparity and homology in fishes
Fishes are both extremely diverse and morphologically disparate. Part of this disparity can be observed in the numerous possible fin configurations that may differ in terms of the number of fins as well as fin shapes, sizes and relative positions on the body. Here, we thoroughly review the major patterns of disparity in fin configurations for each major group of fishes and discuss how median and paired fin homologies have been interpreted over time. When taking into account the entire span of fish diversity, including both extant and fossil taxa, the disparity in fin morphologies greatly complicates inferring homologies for individual fins. Given the phylogenetic scope of this review, structural and topological criteria appear to be the most useful indicators of fin identity. We further suggest that it may be advantageous to consider some of these fin homologies as nested within the larger framework of homologous fin‐forming morphogenetic fields. We also discuss scenarios of appendage evolution and suggest that modularity may have played a key role in appendage disparification. Fin modules re‐expressed within the boundaries of fin‐forming fields could explain how some fins may have evolved numerous times independently in separate lineages (e.g., adipose fin), or how new fins may have evolved over time (e.g., anterior and posterior dorsal fins, pectoral and pelvic fins). We favour an evolutionary scenario whereby median appendages appeared from a unique field of competence first positioned throughout the dorsal and ventral midlines, which was then redeployed laterally leading to paired appendages.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151971/1/faf12402_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151971/2/faf12402.pd
- …