36 research outputs found

    Implementation of cardiac magnetic resonance imaging techniques in small animals

    No full text
    L'imagerie par résonance magnétique (IRM) est un outil de choix en clinique pour la détection des maladies cardiovasculaires. Ses résolutions spatiale et temporelle élevées en font une technique fiable pour l'évaluation de la structure, de la fonction, de la perfusion ou encore de la viabilité du muscle du myocarde. Les modèles animaux, et plus particulièrement le rat et la souris transgénique, sont de plus en plus utilisés pour étudier les gènes et les mécanismes biologiques mis en cause dans les maladies cardiaques. L'IRM est devenue la méthode de référence pour l'étude non-invasive de ces modèles, et ce malgré des différences physiologiques comme la fréquence cardiaque élevée (jusqu'à 600 battements par minute chez la souris) ou la taille de l'animal qui rendent l'acquisition d'images plus ardue que dans le cadre clinique. Cependant, il est possible d'obtenir des images de bonne qualité grâce aux appareils dédiés à haut Champ, à des nouvelles stratégies de synchronisation des acquisitions et à l'utilisation de séquences d'impulsions optimisées pour l'imagerie du petit animal. Les travaux rapportés dans ce mémoire portent sur la mise en place de ces techniques sur l'appareil IRM 7 T du Centre d'Imagerie Moléculaire de Sherbrooke (CIMS). Nous donnons un aperçu des possibilités offertes par l'IRM cardiaque chez le petit animal, puis nous présentons le matériel et les méthodes utilisées pour réaliser l'étude de la fonction cardiaque chez le rat avec l'imagerie cinématique. Dans cette étude, nous proposons l'utilisation d'une technique de débruitage afin d'améliorer l'évaluation quantitative des paramètres de la fonction cardiaque. Enfin, nous détaillons le développement de deux séquences d'impulsions appliquées à un modèle d'infarctus du myocarde chez le rat : une séquence d'inversion-récupération pour l'imagerie de rehaussement tardif au gadolinium et une séquence de préparation T2 pour l'imagerie de pondération T2.Abstract: Magnetic Resonance Imaging (MRI) is a clinically valuable tool for the detection of cardiovascular diseases. Its high temporal and spatial resolutions have established it as a reliable technique for assessment of cardiac structure, fonction, perfusion, and myocardial viability. Animal models, and particularly rats and transgenic mice, are increasingly used for the study of genes and biological mechanisms involved in heart diseases. MRI has become the gold-standard for the non-invasive examination of these models, despite physiological differences such as the rapid heart rate (up to 600 beats per minute for the mouse) and the animal size, that make its application more challenging than clinical imaging. However, high-quality images can be obtained with dedicated high-field MRI scanners, novel gating strategies and optimised pulse sequences. The work reported in this thesis consists in the implementation of these techniques on the dedicated 7 T MRI scanner at the Sherbrooke Molecular Imaging Center. We first provide an overview of the possibilities offered by cardiac MRI in small animals, then we present the material and methods for the study of cardiac function in rats with cine-imaging. In this study, we propose the use of a denoising technique as a way to improve the evaluation of global cardiac function parameters. Finally, we explain in detail the development of two pulse sequences for their application in a myocardial infarction model : an inversion-recovery sequence for late gadolinium enhancement imaging and a T2-prepared sequence for T2-weighted imaging

    Improving the evaluation of cardiac function in rats at 7T by using non-local means filtering.

    No full text
    International audienceMulti-element cardiac coil arrays are often required for signal reception to attain high-quality images of the rat heart. These coils are not yet widely available. We investigated the effect of the non-local means filter on lower quality cardiac cine-MR images, particularly on the accuracy and the variability of cardiac function parameters

    Improving the evaluation of cardiac function in rats at 7T with denoising filters: a comparison study

    No full text
    Background: We investigate the use of different denoising filters on low signal-to-noise ratio cardiac images of the rat heart acquired with a birdcage volume coil at 7T. Accuracy and variability of cardiac function parameters were measured from manual segmentation of rat heart images with and without filtering. Methods: Ten rats were studied using a 7T Varian system. End-diastolic and end-systolic volumes, ejection fraction and left ventricle mass (LVM) were calculated from manual segmentation by two experts on cine-FLASH short-axis slices covering the left ventricle. Series were denoised with an anisotropic diffusion filter, a whole variation regularization or an optimized Rician non-local means (ORNLM) filtering technique. The effect of the different filters was evaluated by the calculation of signal-to-noise (SNR) and contrast-to-noise (CNR) ratios, followed by a study of intra- and inter-expert variability of the measurement of physiological parameters. The calculated LVM was compared to the LVM obtained by weighing the heart ex vivo. Results: The SNR and the CNR increased after application of the different filters. The performance of the ORNLM filter was superior for all the parameters of the cardiac function, as judged from the inter- and intra-observer variabilities. Moreover, this filtering technique resulted in the lowest variability in the LVM evaluation. Conclusions: In cardiac MRI of rats, filtering is an interesting alternative that yields better contrast between myocardium and surrounding tissues and the ORNLM filter provided the largest improvements

    The infarcted myocardium solicits GM-CSF for the detrimental oversupply of inflammatory leukocytes

    Full text link
    Myocardial infarction (MI) elicits massive inflammatory leukocyte recruitment to the heart. Here, we hypothesized that excessive leukocyte invasion leads to heart failure and death during acute myocardial ischemia. We found that shortly and transiently after onset of ischemia, human and mouse cardiac fibroblasts produce granulocyte/macrophage colony-stimulating factor (GM-CSF) that acts locally and distally to generate and recruit inflammatory and proteolytic cells. In the heart, fibroblast-derived GM-CSF alerts its neighboring myeloid cells to attract neutrophils and monocytes. The growth factor also reaches the bone marrow, where it stimulates a distinct myeloid-biased progenitor subset. Consequently, hearts of mice deficient in either GM-CSF or its receptor recruit fewer leukocytes and function relatively well, whereas mice producing GM-CSF can succumb from left ventricular rupture, a complication mitigated by anti-GM-CSF therapy. These results identify GM-CSF as both a key contributor to the pathogenesis of MI and a potential therapeutic target, bolstering the idea that GM-CSF is a major orchestrator of the leukocyte supply chain during inflammation

    Inversion Formula for Continuous Multifractals

    Get PDF
    Journal PaperIn a previous paper the authors introduced the inverse measure <i>µ</i><sup>â  </sup> of a probability measure <i>µ</i> on [0,1]. It was argued that the respective multifractal spectra are linked by the 'inversion formula' <i>f</i><sup>â  </sup>(<i>a</i>) = <i>a</i><i>f</i>(1/<i>a</i>). Here, the statements of Part I are put in more mathematical terms and proofs are given for the inversion formula in the case of continuous measures. Thereby, <i>f</i> may stand for the Hausdorff spectrum, the pacing spectrum, or the coarse grained spectrum. With a closer look at the special case of self-similar measures we offer a motivation of the inversion formula as well as a discussion of possible generalizations. Doing so we find a natural extension of the scope of the notion 'self-similar' and a failure of the usual multifractal formalism

    The Frequencies of Immunosuppressive Cells in Adipose Tissue Differ in Human, Non-human Primate, and Mouse Models

    Get PDF
    International audienceAlthough the metabolic properties of white adipose tissue have been extensively characterized, the tissue's immune properties are now attracting renewed interest. Early experiments in a mouse model suggested that white adipose tissue contains a high density of regulatory T cells (Tregs), and so it was assumed that all adipose tissue has an immunosuppressive profile-even though the investigation was limited to visceral body fat in relatively old male mice. This observation was also corroborated by high frequencies of other cell subsets with immunoregulatory properties, such as anti-inflammatory M2 macrophages, and regulatory B cells. Many studies have since evidenced the persistence of pathogens (trypanosomes, Mycobacterium tuberculosis, HIV, etc.) in adipose tissue. However, a recent report identified adipose tissue as a reservoir of memory T cells capable of protecting animals upon rechallenge. The immune potential of lean adipose tissue thus remains to be further investigated. Here, we compared the relative proportions of immune cells (and Tregs in particular) in lean adipose tissue collected from humans, a non-human primate (the cynomolgus macaque), and three mouse models. We demonstrated that the proportion of Foxp3+ Tregs in visceral adipose tissue was low in all models other than the C57Bl/6 mouse. These low values were not linked to correspondingly low proportions of effector cells because T lymphocytes (a main target of Treg suppression) were more frequent in cynomolgus macaques than in C57Bl/6 mice and (to a lesser extent) humans. In contrast, the proportions of macrophages and B cells were lower in cynomolgus macaques than in C57Bl/6 mice. We also observed a higher proportion of CD34+CD45- cells (which predominantly correspond to mesenchymal stem cells) in C57Bl/6 mouse and cynomolgus macaques than in humans and both for subcutaneous and visceral adipose tissues. Lastly, a microscopy analysis confirmed predominant proportion of adipocytes within adipose tissue, and highlighted a marked difference in adipocyte size among the three species studied. In conclusion, our study of lean, middle-aged, male individuals showed that the immune compartment of adipose tissue differed markedly in humans vs. mice, and suggesting the presence of a more inflammatory steady-state profile in humans than mice
    corecore