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In a previous paper the authors introduced the inverse measure u' of a
probability measure w on [0,1]. It was argued that the respective multifractal
spectra are linked by the “inversion formula” f'(a) = af(1/a). Here, the state-
ments of the previous paper are put into more mathematical terms and proofs are
given for the inversion formula in the case of continuous measures. Thereby, f may
stand for the Hausdorff spectrum, the packing spectrum, or the coarse grained
spectrum. With a closer look at the special case of self-similar measures we offer a
motivation of the inversion formula as well as a discussion of possible generaliza-
tions. Doing so we find a natural extension of the scope of the notation “self-simi-
lar” and a failure of the usual multifractal formalism.  © 1997 Academic Press

1. INTRODUCTION

Let w be a probability measure on [0,1] with its integral function
M(t) = u([0, t]). Then, M is increasing and right-continuous. The differen-
tial of the inverse function M' of M, defined as follows, is a probability
measure denoted by u':

W ([0,0]) = M'(9) = {ilrff{“ M@= o), o<t
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We call u' the inverse measure of . As M is increasing and right-con-
tinuous, u' is again a probability measure.

We are interested in the relation between the spectra of w and u' and
possible implications of such a connection. In [18] it was argued that the
respective spectra should related by the so-called inversion formula

fi(a) = af(1/a). (1)

The practical use of such a formula is most evident when dealing with
left-sided spectra [14, 17, 27] since it allows us to transform the infinite
range [ «,,;,, °] of HGlder exponents of a left-sided spectrum into the finite
range [0,1/ a,,,] of a right-sided spectrum.

A further application of the inversion formula is to self-similar mea-
sures, which reveals telling details on the multifractal formalism. Recall
that a compactly supported measure p is called self-similar iff

u—1
= X o)), (2)
i=0
where wy,...,w,_, are similarity maps of RY with contraction ratios,

r; € (0,1) and where the probabilities p; > 0 satisfy p, + - +p,_; = 1. As
Hutchinson [9] showed, such measures exist and are unique even under the
weaker condition that the w; are contractions.

Provided a condition on possible overlap in (2) holds, it can be shown [1,
3, 7, 20, 25] that all reasonable definitions of the multifractal spectrum of
w coincide. In particular, all spectra equal the Legendre transform g*(a)
= inf _(ga — B(g)) of B, which is implicitly defined by

u—1

X pir PO =1, (3)
i=0

It is easy enough to verify the inversion formula (1) for self-similar
measures with support [0, 1]. In this case we have ry, + -+ +r,_, = 1 due
to [0,1] = U, w,([0, 1]). A moments thought shows that the inverse measure
w' is self-similar with ratios r/ = p, and probabilities p] = r,, whence
g = —B"q"), ¢" = —B(g). Now, (1) follows immediately from f(a) =
inf (ga — B(q)).

Section 2 is devoted to the inversion formula in the case where w and u'
are continuous. We introduce the fine multifractal spectra f,; and fp, in
Section 2.1 and prove (1) for f,; and f, in Section 2.2 In Section 2.3 we
comment on the “degenerated”” Hdolder exponents 0 and <. In Section 2.4,
finally, we turn to the coarse grained spectrum f; and the Legendre
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spectrum f; , comparing them to the fine multifractal spectra and establish-
ing (1) for f.

Revisiting the self-similar measures in Section 3 we leave the realm of
continuous measures by showing that self-similarity can be naturally ex-
tended to discontinuous measures. Doing so we find a class of invariant
measures for which the multifractal formalism does not hold, which means
that not all spectra coincide. This is a consequence of the fact that (1) fails
here for f,, while [28] establishes (1) for f;; and f, also in the case of
discontinuous measures.

Discussing possible generalizations, we compare discontinuous self-simi-
lar measures with equilibrium measures and comment on the second
multifractal phenomenon found with discontinuous self-similar measures:
there are “right-sided” multifractal spectra with a tangent through the
origin of slope strictly smaller than 1. This slope is directly related to the
particular way of renormalizing mass in an iterative construction of discon-
tinuous self-similar measures.

2. THE INVERSION FORMULA

2.1. Preliminaries

Let M be the distribution function of an arbitrary probability measure
on [0,1] as in Section 1. In this section, an assumption will often appear
which can be stated in several equivalent ways:

e M is continuous and strictly increasing.
e M:[0,1] — [0,1] is onto and one-to-one with inverse M.
e n and u' are both continuous.

e u is continuous and no interval of positive length has zero u
measure.

Given a number « > 0, the set K is defined by

K,={te[0,1]: a(t) = lim log w(1)

exists and equals « ;.
- loglI|

The limit «(2), if it exists, is called Holder exponent of u at t. Here,
I — {t} means that I may run through any sequence (1), . Of intervals
such that ¢ € I, for all k € N and such that |I,| —» 0 as k — .

DerFiniTiON 1. The two fine multifractal spectra are the Hausdorff
spectrum and the packing spectrum which are given by

fu(a) =dim(K,) and fp(a)=Dim(K,),
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respectively, where dim and Dim denote the Hausdorff and the packing
dimension, respectively.

For completeness, we recall the definitions of the dimensions dim and
Dim. Denoting by n”(E) the y-dimensional Hausdorff measure of a set E,
ie.,

n"(E) = supnd(E), n(E)= inf{lekly: Ec U and || < 8},
60 N N

the Hausdorff dimension is defined as
dim(E) = inf{y > 0: n?(E) = 0} = sup{y = 0: n"(E) = =} .
Following Tricot [30] one defines the y-dimensional packing premeasure by
7'(E) = 6ir_1)f0%57(E),

7y (E) = sup{ YL {1} is a 8-packing of E}
N

Here, a &-packing {I,}y of E is a collection of mutually disjoint, open
balls, i.e., intervals, each of length less than or equal to 6 and each
intersecting E. Then the y-dimensional packing measure is given by

77(E) = inf{Z%V(E”): Ec U E}

(the sets E, are arbitrary here) and the packing dimension is given by
DIim(E) = inf{y > 0: #¥(E) = 0} = sup{y > 0: w?(E) = «}.
In [18], the inversion formula was established heuristically by a counting
argument, covering K, by N(e, a) = £/(® intervals of size ¢. As it was
argued, M maps these ¢ intervals to N(e, a) intervals, each of length
approximately equal to &' == £, covering the set K[: of points 6 with
w'-Holder exponent o' =1/a. Thus, N(e, a) should behave as =
(e") 7@/ from which the inversion formula was deduced.

This proof will become rigorous for f;, and f, by considering coverings
of K, by arbitrary sets I. A proof for f, however, cannot follow the same
lines because the coarse graining approach f; estimates Holder exponents
of intervals for which a precise relation corresponding to o' =1/«
(Lemma 4) is not available.

The first step in the proof is to establish that the operation u — u' is
inverse to itself. This holds, though M is not everywhere inverse to M.

LEMMA 2. Fixat from [0,1). If M(¢') > M(¢t) whenever 1 > t' > t, then
MT(M(t)) =t.
Otherwise, MY(M(1)) > t.
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Proof. By definition we have
MY (M(t)) =inf{¢': M(¢') > M(t)} = sup{t': M(t') = M(t)} > 1.

This proves the inequality. Consider a sequence ¢, ~ t. If M(z,) > M(t)
for all n, we conclude M'(M()) <inf, ¢, =¢. |

PropPosITION 3. We have ,uﬂ = u; in other words, M =M.

Proof. Take t <1 and let 6:= M(s). Recall that M'(¢t) = inf{6’:
M6 > ).

Assume first that M1'(¢) < 6. Then, we find 6’ < 6 with M'(9") > ¢.
Take t' >t with M (') > ¢'. The definition of M " implies M(¢') < 6’ <
6 = M(¢), a contradiction to monotony.

Assume now that M''(r) > 6. Then we find 6’ > 0 with M'(6') < ¢.
Take ' > t. The definition of MT implies M(¢') > 6'. Letting ' \ ¢ yields
M(t +) > 6’ > 6, a contradiction to right-continuity. 1

LEMMA 4. Assume that M is onto and one-to-one, or equivalently, that
is continuous and nonvanishing. Then

€K, M(1) €K]{,,.

Proof. Consider any interval I' containing 6:= M(¢) and let I =
M~1(I"). Since I \ {¢} iff I\ {6} and since

log w'(1") _loglll
logl7'l log (1)’

the claim follows. |

2.2. Hausdorff and Packing Spectrum

Because the operation u — u' is inverse to itself (Proposition 3),
estimates in one direction only are sufficient. Therefore, we set

lo I
F, = tE[O,l]:IimsupL()Sa ,
I-{r} logl/|
log u(7)
G,= (t 0,1f: liminf —— > ,
= ot S

log uf(I7
Kli={6e[0,1]: lim gM—(T)= T
1'—y logll'|

and similarly for F and G/..
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ProPosITION 5. For any p and any subset A of G, one has
dim(A) > a-dim(M(A)),
provided 0 < a < o,

Proof. Fix a' < « and let
A, ={ted: w(l) <1 ifteland || <1/m). (4)

Since A is a subset of G,,, we have

A= U 4,.
m>1
Note that for any interval I,
M(D)| < (1), (5)

even if M is not continuous. More precisely, if a is the left boundary point
of an interval I, then |M(I)| = u(I\{a}) since M is right continuous.
Thus, we have equality in (5) iff I is left open or u({a}) = 0.

Let {/}; be a covering of A, by intervals of length less than 1/n
(n > m) and assume that all [; intersect 4,,. We have

IM(L) < (L) <11 < (1/n)".

Consequently, {M(1,)}; forms a covering of M(A,,) by intervals of length
less than 8, := (1/n)* and we find

/" (M(A,)) < LIM(L)* < LI

It is clear that the same estimate must hold also for arbitrary covers of
A,,. Thus,

my/C(M(A,)) < ml,(A,) <17(A,) < 77(A),
which proves that dim(M(A4,,)) < dim(A4)/«’. Recalling the o-stability of

Hausdorff dimension dim(M(A4)) = sup,, dim(M(A4,,)), the claim follows
by letting o’ 7 . |

PROPOSITION 6. Assume that w is continuous and nonvanishing. Then
Dim(A) < a-Dim(M(A))

for any subset A of F,,, provided 0 < a < o,
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Proof. In its basic structure this proof is very similar to Proposition 5.
Note, that « = 0 is allowed here. Fix o' > « and let

A, ={tea: ul) =" ifteland || <1/m).
Since A is a subset of F,, we have

A= 4

m>1

m*

Fix m for the moment and let E, denote an arbitrary subset of A,,.
Consider a 1/n-packing {I}; of E, which is a collection of mutually
disjoint, open intervals, each of length less than or equal to 1/n and each
intersecting E,. Since M and M" = M~* are continuous, the collection of
all I = M(I)) provides a packing of M(E,). The central estimate is

11 = (L) = 151",

which follows since we have equality in (5). To get the obvious argumenta-
tion started, we need an upper estimate of the length of Ij*. Again, we use
the continuity of M; more precisely, its uniform continuity. Choose é > 0.
Then there is n such that |I| < 1/n implies |[M(I)| < §.

In summary, {I}; is a &-packing of M(E,). This allows us to estimate
the y-dimensional packing premeasure 7:

7Y (M(E)) = LIM(L) = LIL™.
Since {I}; is an arbitrary 1/n-packing, it follows that
7y (M(E)) = 37" (E,) = 77 (E),

and letting 8 \ 0, we obtain #Y(M(E,)) > 7" (E,).

In order to estimate the packing measure of M(A,,), consider a count-
able cover, say M(A,,) c U, E;. Then the sets E, == M (E] n M(A4,,)
form a cover of A,,. Since E, C A,, for all k, the previous reasoning
applies, and by the definition of the packing measure,

%%V(E,I) > %%V(E,I NM(A,)) = %%W'(Ek) > 77 (A,).

Taking the infimum over all possible covers {E,} of M(A,,) we get, due to
ADA,,

7Y (M(A)) = 7"(M(A,)) = 7" (A,,).
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This proves that «'- Dim(M(A)) > Dim(A4,,). Finally, the o-stability of
the packing dimension, i.e., Dim(A4) = sup,, Dim(A4,,) yields the claim
when letting o’ N~ a. |1

CoRoOLLARY 7 (Inversion formula). Assume that M is onto and one-to-
one, i.e., w is continuous and nonvanishing. For any subset A of K ,, we have

dim(A) = a-dim(M(A)) and Dim(A) = a-Dim(M(A)),

provided 0 < a < o,

This corollary implies, in particular,
fi(a') = dim(K}) = dim(M(K,, 1)) = a' dim(K, 1) = «'f1(1/a"),

and similar for fp.

Proof. Note first that M(A4) c K{,, by Lemma 4 and that M"(M(A))
=A by Lemma 2. Applying Proposmon 5onceto pand A CcK,cG,,
and once to ' and M(A4) cK{,, c G, yields dim(A4) > « d|m(M(A))
> dim(MT(M(A))) = dim(A). The argument for the packing dimension is
the same. |11

Remark 8. Proposition 5 could be used to establish the inversion
formula in general if it were not for a generalization of Lemma 4 which
appears to be cumbersome. In the context of [28] this generalization will
be achieved more naturally.

Remark 9. In the definition of K, F, --- all the intervals are consid-
ered. In certain situations, however, it is convenient to restrict attention to
a family J of intervals. If so, the sets K:, Fr, and G+ have to be defined
using the images by M of the intervals in J, and the definitions of
dimensions on - and #-axis have to be modified accordingly in order for
the inversion formula to remain valid.

2.3. Holder Exponents 0 and

As will be demonstrated with self-similar measures, it becomes natural
to consider also the degenerate Holder exponents 0 and « when dealing
with measures which can have atoms and gaps. It is worthwhile noting that
these values « = 0 and « can occur not only in the trivial places where M
is constant or discontinuous, but also as nontrivial limits. As an example
we refer to the left-sided multifractal presented in [14, 27] some of which
are continuous and nonvanishing and have Hdlder exponent « (Lebesgue)
almost everywhere [27, Example 1].



340 RIEDI AND MANDELBROT

The sets of Holder exponent 0 or « have to be treated separately, since
most of the results of the preceding section do not apply. Only the
following corollary to Proposition 6 is available:

COROLLARY 10. Assume that p is continuous and nonvanishing. Set

K, = {t<[0,1]: lim M

= 0and w(I) = 0iffI - {1} ).
Jim gl and p(I) - 0 iff I — {t}

Then
dim(K,) = Dim(K,) = 0.

The points with Holder exponent 0 which are not included in K, are the
atoms. Being countable, they always form a set of Hausdorff and packing
dimension 0.

The corresponding inversion result would be that M(K,) has dimension
1. This is not true in general, however, as K, may be empty. Nevertheless,
this phenomenon occurs—as we just mentioned—uwith left-sided infinitely
self-similar multifractals, at least if one restricts the eligible intervals I in
the definition of K, F,, G,, dim(-), and Dim(-) to the ones which occur
naturally in the construction of the measure. (See Remark 9 at the end of
Section 2.2.) This fact, i.e., Dim(K,) = 0 and dim(M(K,)) = 1, reflects the
fact that M is not Holder continuous of any order, though it is continuous.

2.4. The Coarse Grained Spectrum

In applications, f; and f, are often hard, if not impossible, to calculate,
and one might prefer to work with the spectra f; and f, obtained by a
coarse graining approach instead. We start by giving definitions and by
comparing the new notions with the fine multifractal spectra. Then we
collect some results from [25, 26] which are used to show that the inversion
formula (1) holds also for f; in the case of continuous and nonvanishing
. As follows from Section 3 this formula fails, though, for discontinuous
self-similar measures.

The coarse grained spectrum f;(a) is defined by

log Ns(«a, &)
= lim i A
Jo(a) = lim fimsup ==

where N; denotes the number of “intervals of size 6 with coarse HGlder
exponent exponent a(B) = log w(B)/log|B| roughly equal to «.” As was
described earlier in [22, 25], the straightforward or naive way of counting
gives poor results in theory as well as in numerical application. Among the
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various possible improvements [26], we favor the following for its simplic-
ity. Let Hy be the set of all intervals B = [18,(/ + 1)§) with integer / and
with uw(B) # 0, and let B, == [(I — 1)8,(I + 2)8). Then

Ni(a, &) = #{B € Hy: |B)|*"" < p(B;) <|By|*"*}.

Though tempting, it is wrong to interpret f, as the box dimension of K.
The truth is that K, has the same box dimension as its topological closure
which is, in the case of self-similar measures, equal to the whole support of
the measure. In fact, letting K, ., == G, N F,, and setting

A, ={teK, , o, U < u(I) <|II*"*ifreland|I| < 1/m},
we find
#BeH,: BNA, ) <N;(a,2e), (6)

provided 36 < 1/m. Denoting the box dimension of a bounded set E by
A(E), we have

) log#{B € Hy: BN A,, # &}
A(A4,,) = limsup

8§—0 IOg :I'/6
. log N;(a,2¢)

< limsup ——.
§—-0 Iogl/6

It is well known that dim(E) < Dim(E) < A(E) (see Tricot [30] or Fal-
coner [6]). Together with K, <K, ,,.,<c U, A4, and Dim(U, 4,,)
= sup,, Dim(4,,), one concludes f,(a) < f,(a) < f;(a). If the box di-
mension was o-stable like Hausdorff and packing dimension, one could
argue A(U,, 4,,) = sup,, A(A4,,) < f;(a). This is obviously not true for
self-similar measures where U,, A,, = supp( ).

LEMMA 11.
fu(a) <fp(a) <fs(a).

The spectrum f is related to the partition function 7(q),

logXs e, w(By)*
log 6

= liminf
7(q) = limir

through the Legendre transform [25]

"(q) = inf (qa ~fo()). (7)
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This relation holds also in the much more general context of Choquet
capacities (see Levy-Vehel and Vojak [12, Theorem 3]). The tentative
inversion formula (1) translates to

q'=-1. 7=-q (8)

Most evidently it holds for self-similar measures [compare (3) and (10)]. In
general, however, (8) may fail, as is the case with discontinuous self-similar
measures.

It is natural to introduce the Legendre transform of 7(q) as a further
multifractal spectrum:

fila) =71%(a) = inf (qa — 7(q)).
geR
An equivalent form of (7) is to say that f, is the concave hull of f.
Consequently:
LEMMA 12.  For all «,
fe(a) <fi(ea),

with equality in points of strict concavity. Moreover [26],

fo(a®) =qa’=1(q)  (g¢>0),

fe(a™) =ga"=1(q)  (q<0),

where a® = 17'(q + ) and o= 7'(q — ) denote the one-sided derivatives of
7(g).

(9)

We say that the multifractal formalism holds for a given measure  if the
inequalities in Lemmata 11 and 12 can be replaced by equalities. To
establish this formalism under various assumptions has been a point of
major interest in multifractal analysis [1, 20, 25]. In general, however, the
estimate (6) can clearly be sharp, meaning that an interval B can show a
coarse Holder exponent « although it contains no point ¢ with «a(¢) = «.

The most simple example of this kind is the absolutely continuous
measure w with density ¢(¢) = ¢ on [0, 1], i.e., M(¢) = t?/2. Here, a(t) = 1
for 0 <t < 1and «a(0) = 2; hence f,(1) =1, f,(2) = 0 and K, is empty,
otherwise. A direct calculation shows, on the other hand, that f;(a) = 2
—a for 1 < a < 2. What seems to be a paradox is readily explained:
while log u(1)/log|I|tends to 1 for all £ > 0 in the limit, a coarse graining
on any ‘“pre-asymptotic” level 6 > 0 will show a nontrivial distribution of
Holder exponents. The striking difference between f,, and f; in this
example expresses the strong nonuniformity of the convergence of the
Holder exponents «a(t). Further examples of this kind are found with the
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inverse measures of self-similar measures which are presented in Section
3.

Consider now a continuous, nonvanishing measure u and its inverse
measure w'. In order to compute £/l one divides the 6-axis into intervals of
equal lengths. Since M and M'" are continuous, this translates into
dividing the f-axis into intervals of equal w-measure. (Note that this is not
true for discontinuous measures w.) This kind of partitioning of the -axis
is exactly the procedure used when computing the so-called fixed mass
spectrum fgy, of w. Asis shown in [26], fr,, is related to f; by the formula

fe(a) = afen(l/a),

where f; is strictly concave. We conclude:

PropPosITION 13. Let u be continuous and nonvanishing. Then the
inversion formula holds for f in points o where it is strictly concave.

COROLLARY 14. Assume that w is continuous and nonvanishing with
strictly concave f. Then the multifractal formalism f, = f; holds either for
both w and u' or for neither.

3. SELF-SIMILAR MEASURES

Let u be a self-similar measure as in (2):
u—1
M(E) = Z Di :Uv(Wiil(E))-
i=0

As a condition on possible overlap we will assume that (0, 1) satisfies the
open set condition, which means that w;((0, 1)) are mutually disjoint subsets
of (0, 1). It is then easy to see that the unit interval [0, 1] is divided into u
subintervals V; (i = 0,...,u — 1), the length and mass of which are the r,
and p, fractions of their “parent interval” [0, 1]. The same applies to the
subintervals, and iteratively ad infinitum. More precisely, for all n € N the
mass of u is located on u" intervals V, ..., of length r, ---r, and
mass p, - p, . Define the convex function ,B(q) as in (3):

21 pqr,—ﬁ(q) =1
171 .
i=0
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Then the following holds (see Sections 2.2 and 2.4 for notation): The
partition function 7(g) equals B(g), and the multifractal spectra all
coincide. In summary,

fu(e) =fp(a) =fo(a) =fi(a) = 7(a) = B*(a)
_ {qﬁ’(q) - B(q), fora=pg'(q), (10)

—o0, otherwise.

First results in this direction are found with Kahane and Peyriére [10],
Cawley and Mauldin [3], Falconer [7], Olsen [20], and Riedi [25]. In the
stated form, (10) is a special case of the result by Arbeiter and Patzschke

[1].

3.1. The Inverse of Self-Similar Measures: Continuous Case

Here, we assume that the support of u, denoted supp( w), is all of [0, 1].
As a self-similar set [supp(w) = U; w,(supp( w))] it must have dimension
D = —7(0) = —B(0)[9]. But D = 1 here, which is equivalent with r, = 1.

In this case, the inverse measure u' is obtained simply by exchanging
the ratios ry,...,r,_, and the probabilities p,,..., p,_;. In other words,
w' is self-similar with probability vector (rq, ..., r,_,) and with the unique
linear maps w! which have the same orientation as w; and for which
wl([0,1]) = [py + = +p,_1, po + = +p,;]. Since (3) establishes a one-to-
one relation between B and g, we obtain 8" = —q, ¢" = — 8. Applying
(10) to w and w' this yields (8) immediately, and the inversion formula (1)
follows for all spectra by writing

B*(a) igf(qa - B(q)) =« igf(q - B/«)

=« il;f(qT/a -B)=a- (BT)*(l/a).

ProprosITION 15.  For self-similar measures supported on [0, 1] the inver-
sion formula (1) holds for all four spectra fy, fp, fg, and f;.

3.2. Discontinuous Self-Similar Measures

In this case supp( ) has dimension D = —7(0) < 1, consequently Yr;
< 1. Consider

0,17\ Uw([0.2).

This set has at the most u + 1 components which are open intervals. It is
obvious how to define maps w; (j = u,...,v — 1) such that (0, 1) is still an
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open set and such that r, + --- +r,_;, = 1. We assign the probabilities
pj=0( =u,...,v — 1) to the new maps and define w! as before. Then
w' is invariant under wj,...,w! , with probability vector (p},...,p!_))
= (rg,...,r,_1). As we will show in an example, the newly added maps
wl,...,wl_, are constant functions and create the atoms of which u'
consists. With this procedure we have actually performed the step toward
generalized self-similar measures which may include vanishing probabili-
ties and/or vanishing contraction ratios, hence, toward discontinuous

self-similar multifractals.

ExampLE 1. Consider a Cantor measure u, i.e., a self-similar measure
with u = 2, wy(¢) = rot, w(¢) = rit + 1 — ry, where we assume ry + r; < 1,
and p, = p, = 1/2. Then, the inverse measure w}. is invariant under the
maps wji(0) = /2, wi(0) = 1,2, and wi(6) = /2 + 1,2 with probabili-
ties pl =r,, pl =r, and py =1 —r, — r;. By invariance of ul or di-
rectly from the definition of M' it follows that w} creates an atom at
6 = 1/2 of mass p} corresponding to the gap (r,,1 — r,) in the support of
e Iterating, we find that other atoms are present, corresponding to the
gaps of supp( ) at the various scales. Moreover, since the length of these
gaps adds up to 1, so must the masses of the atoms and u}. is purely
atomic.

An analysis of the HOolder exponents of u' starts with the simple
observation that the Hdlder exponent 0 is assumed in the atoms. In other
words, a'(8) = 0 u'-almost surely. Alternatively, in the language of the
specialist, D, == —(r"Y(1) = 0. Assuming that the inversion formula (1) is
valid in general, it is also easy to determine the Holder exponents a'(6) #
0. Instead of giving a general proof of (1), though, we would like to give an
intuition of the singular behavior of ' in points other than atoms.

To this end, one has to consider a measure ! which concentrates on a
suitable subset of nonatomic points. (We use the letter s instead of ¢' for
ease of notation.) This “zooming in,” however, is only useful for f,, and f:
since they are defined pointwise they provide a “local” analysis. It has no
implication on f;, which is defined in “‘global’” terms. The reader familiar
with the usual arguments in this context (see e.g., [3, 25]) will not be
surprised that this measure u! is closely related to the inverse measure of
w,, the measure which concentrates on the points of u-Holder exponent
a, = B'(q). The value of g being fixed, w, is a self-similar measure
like w itself, with the only difference that its probabilities in (2) are pfr; #
rather than just p,.

Translating this to u', fix a real number s and let u! be the self-similar

measure invariant under wi,...,w!_, and with the probabilities

= (p:)s(rf)_y=rispi’7 (i=0,...,u—1).
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Here, y has to be chosen such that the new probabilities p! sum up to 1,
ie.,

u—1 s —y u—1

Z(P;T) (rf) = Zrispifyzl-

i=0 i=0
(We use the letter y instead of B for ease of notation.) With the
convention 0* := 0 for all x, the definition of y generalizes (3). By (3) we
find the same simple relation between the auxiliary functions of u and u'
as in the continuous case:

y(—B(q)) = —q.

Note, that we disregard the additional maps since we want to avoid atoms.
This has the further advantage of providing a natural encoding of
nonatomic points 6 by infinite sequences of intervals VSI,,,% which are
nondegenerate, i.e., of length r; r;” > 0. (In the simple case of the
inverse Cantor distribution, where u = 2 and r{ = r] = 1/2, this is exactly
the binary representation of 6.) Following the usual arguments [3, 25], one

writes the Holder exponents a'(z) of u' as

. _log pl --pl (1/m)Zi_,log pl
a'(t) = lim ————=" = lim - o
nse logr) --rl  n-e= (1/N)Xi_,logr]

Clearly, the HGlder exponents [ w'1(t) of w' can be written in a similar
fashion, replacing p! by p!.

The Law of Large Numbers (LLN) implies now that for u'-almost all ¢,
E,log pf  XiZop! log p!
E, log r/ - ZZop) logr]

=y'(s) = of,

al(t) =
and, simultaneously,

E,log p/  LiZgp! log p;
T _ s 1 _ 1 1 1 _ . ’ _ _ T

Fixing a' = a! = y'(s) for the ease of notation, the first property implies
that K'i has full w!-measure. The second property means that wu' is
equivalent to the y*(al)-dimensional Hausdorff measure restricted to
K, allowing the estimate dim(K[:) > y*(a'). A completely rigorous
argument, which is beyond the scope of this paper, is contained in [28]. It
applies the main result of [1] to w!. Finally, the usual covering methods [7,
Lemma 4.3; 27, Proposition 4; 28, Theorem 16] yield the upper bound for
dim(K ). In summary,
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PrRopPoOSITION 16. The inversion formula for discontinuous self-similar
measures holds for f,; and fp:

faCa®) = fi(a") = y*(a') = &'B*(1/a’) = a'fy(1/2").
A special role is played by the zero of v, i.e., y(D) = 0, where

To the contrary, with 8 where B(1) = 0, the zero of y will be strictly less
than 1. This is, of course, just another way of expressing that the support of
w has dimension D less than 1. Again in other words, while w, = u, none
of the w! will coincide with u'. A self-similar measure constructed with the
probabilities p! would “die out.” To obtain a nontrivial distribution using
pl, the mass of the intervals VT .., had to be normalized on each level n.
This could be achieved in the Way it is done with equilibrium measures of
dynamical systems (compare Section 3.6) or by “putting mass aside in
atoms” as it is done with discontinuous self-similar measures. Let us be
more specific.

For the Cantor distribution, e.g., the mass of ul- at a given level 7 is
distributed as atoms in the dyadic points of order n and in the intermedi-
ate open intervals. The evolution of the mass in these intervals follows the
rules of a multiplicative process with probabilities p} and p!.

This has immediate and important consequences for the partition func-
tion 7'. For s > D, the contribution coming from these “intermediate”
intervals is overwhelmed by the constant contribution of the atoms; the
contrary is true for s < D.

PROPOSITION 17.  For the Cantor measure . (Example 1) and its inverse
measure u. we have

(s) = —log,(rg + 1), fors s.D, (1)
0, otherwise.

Comparing this with (10) and (3) it becomes apparent that the inversion
formula (8) holds exactly in the region s < D, i.e., g < 0.

Proof.  First note that it is sufficient to consider grids H, of size
8 = 1/2"[25]. The support of u!. is all of [0, 1], so all intervals [(/ — 1) /2",
(I +2)/2") contribute. Consider a dyadic point 6 of order n, i.e., 0 = .g,

- g, in dyadic representation. For 6 # 0 we have

/‘LTC((G’ 6+ 1/2")) = ral o rg,, and /‘LTC({O}) = rsl rgk,l'er (12)
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where k = max{/ < n: ¢, = 1}. We may call k the minimal dyadic order of
0 since 6 = .g, - g, is the shortest possible dyadic representation of 6.
From this, it becomes clear that the atoms at the left boundary point
dominate the measure of the intervals from H,. Writing such intervals as
[6,0 + 27") with 6 as the preceding text, we find

Y ow(0.6+2M) =6Y Y (nor)

0= .e1 &, k=0 g . g, 2{0, 1}F
n—1 B n
=& L (p+r) =& - (rg+r)"),
k=0

where the error terms ¢, and &, are bounded independently of #, i.e., &,
lies between rj and (r, + max; r,)*, and &, = (1 — r§ — r{)¢,. Finally, we
stress that we do not have to pass to the enlarged intervals B, since wul- is
supported on an interval. Instead of giving a general proof, we provide a
short argument adapted to this case.

First, it follows by induction that among two neighboring atoms the one
with the smaller “minimal dyadic order” has the larger mass. Using this
fact and denoting by 6 the dyadic point with largest mass in B;, one
obtains that wl((0,0+ 2™") < ul(B,) < 3& ul({(0}) < 3¢/ ul(0, 0 +
27")) with £’ bounded as &!/2. Estimating for all B in this way, one
obtains a new sum where none of the 6 of order »n will contribute, but all
of order < n — 1 contribute at least once and at most three times. Hence,
Lpen me(B) = &L — (rg + )"~ ) with bounded £,". This completes
the proof. 1|

PROPOSITION 18. For the coarse grained spectrum fl of the inverse
measure wl. of the Cantor distribution u. we find

D« for 0 < a < vy'(D),

t _ ¢t -
Joe) =fil@) =14 i1 o) fora=y(s) ands < D.

Proof. Take an arbitrary number v € (0, 1]. We will show that a lower
bound on f!(a) is found in the Legendre transform of »- v, ie., in
v- f}(a/v). Proposition 17 yields sup, _,vf;(a/v) = f/(a), whence f; >
f.,» and the claim follows from Lemma 12.

Again, we can restrict our attention to 6= 1/2" [25, 26] and to
nonenlarged dyadic intervals B (see the preceding proof). From (12) we
get the distribution of Holder exponents immediately. Looking at those 6
with k = | vn], the largest integer smaller than vn, we derive the necessary
estimate.
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To do so, however, we will need a large derivation result of Ellis-Gartner
[5]. Define random variables X, = log ul.(B), where B is chosen ran-
domly, i.e., each with probability 1,/2%, out of those intervals from H, o
with left boundary point 6 being dyadic of minimal order k = |vn]. First,

we need the moment generating function of X,. By (12),

Cn(s) = [E[exp(SXn)] = gnz_k ’ Z (rsl rsk,l)s'

g1 &p_1€{0,1}71

where ¢, is bounded. Letting a, = n log 2 we find that

k
log,(ry + 1)) — —

1
() = Jim 209 (s) = b n

= —wvy(s) — v.

This being a convex and differentiable function, Ellis’ Theorem 11.2 [5]
applies. Denote by P,(U) the probability that (1/4,)X, lies in U for a
randomly picked B. If U is open, then

log P,(U
-I(U) < Iiminfg—"(),
n—w an

where I(U) = inf{Il(a): a« € U} and I(a) = sup,(sa — c(s)). Choosing
U=(-a- & —a+ ) wehave P(U) < 27N, (a, &) since (1/a,)X, is
the coarse Holder exponent of B. Noting that

I(a) = —inf(c(s) —sa) = —vinf(s(—a/v) — y(s) — 1)
= —v(fi(—a/v) - 1),
we obtain
vsup{fi(a'/v)ia—e<a <a+e&}< Iiminfw_

n

By continuity the left-hand side tends to »f}(a/v) as & — 0 from which
fia) = vfi(a/v). The proof is complete.

Using techniques introduced in [26], in particular the so-called semispec-
tra, one can use f; < f, and the estimate of liminf, _, , given previously to
show that the limsup;_, , is actually a limit. ||

Nothing is special about w. in Propositions 17 and 18. Apart from
technical details the same proofs work for general self-similar measures as
is shown in [28].
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3.3. Impact on the Multifractal Formalism

A weak form of the so-called multifractal formalism is said to hold if
fe =1L

(Compare Lemma 12.) Examples to which the formalism applies are the
“classical”” self-similar measures [1, 20, 25], as well as the discontinuous
ones as we just saw for ul. and as is shown in general in [28]. The linear
part we found with the spectrum f! of wul is a consequence of the
presence of a whole hierarchy of atoms which produces a nontrivial range
of “frequently occurring” coarse Hdlder exponents.

The more important strong form of the multifractal formalism states
that

fu=TIs-

(Compare Lemma 11.) This property has been shown to hold for quite
general constructions of (random) self-similar measures (see Arbeiter and
Patzschke [1], Olsen [20], and Lau and Ngai [11] and also Kahane and
Peyriére [10], Cawley and Mauldin [3], and Falconer [7]), as well as in the
context of dynamical systems (see Rand [24], and Pesin and Weiss [21] and
also Brown, Michon, Peyrére [2], as well as Collet, Lebovitc, and Porcio
[4D.

For u!., however, we find

fa =12 #fo =1

The difference between fine multifractal spectra and coarse grained spec-
trum expresses, therefore, the strong dependence of the convergence rate
of log u'(1)/loglI| = «'(#) on 6, yet £ is the concave hull of f;}. This
fact confirms our point of view which is to include all points of [0, 1] and,
hence, also the vanishing Holder exponents in the fine multifractal spectra.
Otherwise, a convincing connection between £ and £, would not exist.

3.4. Conservative Random Case

The random self-similar measures ® considered in [1, 7, 10, 15, 20] are
obtained by randomizing the usual multiplicative process as follows. Take
a code space {0, ...,u — 1}". To each finite sequence i € U,{0,...,u — 1}"
assign independent random variables r; and p; such that r, ...
and p; ...; are of equal distribution as r; and p; , respectively, and such
that X p, =1 almost surely. When assuming in addition that Xr, =1
almost surely there is no difficulty in understanding the construction of a
random self-similar measure generalizing (2). The inverse random measure
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@' is obtained simply by exchanging the random variables r; and p,. Doing
so, corresponding realizations will indeed be inverse to each other.

Thus, provided the open set condition holds, the results of [1, 7, 20]
imply the inversion formula (1) for the fine multifractal spectra f;; and f,.
Note that we have f, = f» = max(f;,0). Using large deviation principles
[26] shows that a properly defined f,; satisfies f;(a) = f,(a) for all a.
This yields the inversion formula for the coarse graining approach.

In [16] negative values f;(a) < 0 have been called negative dimension
for reasons of analogy. One should keep in mind, however, that f;(«a) is
not a dimension in the strict sense (compare Section 2.4). If negative,
fo(@) cannot be a “counting function” either. The correct interpretation is
as follows: The probability that the coarse Holder exponent log w(I)/
log|/| = « for a random measure w and a randomly picked interval I from
the &-grid is roughly equal to 6 /¢(¥), Since there are only 6 such
intervals, one has to sample w itself 8/¢() times in order to “observe” the
Holder exponent «.

3.5. Higher Embedding Dimension

A generalization to self-similar measures in d-dimensional Euclidean
space is possible in special cases. In order to carry out a construction
analogous to the one-dimensional case, one will assume in a first case that
the measure is supported on the unit d-cube [0, 1]%. Then it is straightfor-
ward to define an “inverse” measure on the 6-line, making the natural
choice p/ =rf, rl = p,. An adapted form of the inversion formula will
hold due to (3), when adding the term d at the right places.

There is a freedom in choosing the order of the maps w. In addition,
the inverse measure will live on the interval [0, 1]. This reflects the fact
that the spectra of self-similar measures depend in fact very little on the
geometry of the construction, i.e., only on the numbers r, and p;, and on
respecting a separation condition.

This comes to its extreme when the measure lives on a fractal set of
dimension D. One may then construct an inverse self-similar measure
using p! = r? (destroying the usual inversion formula) or by adding maps
with zero probability as in Section 3.2. It has to be assumed, then, that
the extended family produces a tiling of the space. (See Strichartz [29,
Theorem 5.2] and references therein.) More general cases might become
treatable when considering infinite systems of maps; see Mauldin and
Urbanski [19] and Riedi and Mandelbrot [27]. In any case, it is not clear
how to interpret the inverse measure.

A generalization to vector-valued self-similar measure [8] in d-dimen-
sional Euclidean space might appear more natural. Again, a procedure is
only clear in very special cases and similar problems as mentioned arise. A



352 RIEDI AND MANDELBROT

duality as desired between two vector-valued self-similar measures can be
found, e.g., in the following situation. In the notation of [8] assume that
[0, 1]¢ is self-similar under the maps S; (i = 0,...,u — 1) as well as under
ST G=0,...,0—1. Let T(x) == (D -x and T,'(x) :== rf -x. Then the
inversion formula holds due to the results of Falconer and O’Neil [8],
again provided that the term d has been added at the right places.

3.6. Equilibrium Measures

A natural generalization of the notion of self-similar measures are the
equilibrium measures which appear in the theory of dynamical systems. In
a typical situation on the line, one will consider a conformal mapping g
which maps some disjoint intervals I, c [0, 1] onto [0, 1] such that —log|g’|
is negative and Hdolder continuous. The invariant measure in question will
then live on the repeller of g; more precisely, it will be the equilibrium
measure of another Holder continuous function ¢. This scheme reduces to
the self-similar case if g is such that the w, are its inverse branches and if
¢ takes the constant value log p; on I..

The multifractal formalism

fu(a) = f,(a) has been established for cookie-cutters by Rand [24] and
for equilibrium measures of certain Moran constructions by Pesin and
Weiss [21]. Set i = exp(¢ — P{$}) with P denoting the pressure function
and let 8 be (uniquely) defined through

P{qlog ¢ — B(—loglg')} = 0.

Then, 7 equals B and the spectra of w collapse with the Legendre
transform B*. Note that the definition of 8 reduces to the usual one (3)
in the self similar case.

Reciprocal equilibrium measures

It is tempting to produce new measures analogously to self-similar
measures, i.e., to exchange the roles of “‘geometry” —log|g’| and “mass” ¢,
and to compare this procedure with the inversion. Assume, therefore, that
¢ = —log|#'| for some function 4 with properties analogous to g. Denote
the A-invariant equilibrium measure corresponding to ¢ == —loglg’| by %.

First, the fine multifractal spectra of u' can be obtained through the
inversion formula [28]; hence, by taking the Legendre transform of the
inverse B~1. In analogy with (11), especially since gaps are present, we
conjecture that the partition function of u' equals min{ 371, 0}.

Second, being an equilibrium measure, w has its fine multifractal
spectra equal to B* where, as before, P{tlog ¢ — B(—log|#'|)) = 0 with
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W = exp(¢ — P{$}). Though very closely related, the spectra of u' and &
are very well distinguished, i.e., 8 # B, unless P{¢} and P{¢} vanish.
However, this is the degenerate case when u and w are supported on all
of [0, 1].

Special feature of the spectra

One particular difference between the spectra of u' and u is the slope
of their tangent through the origin. Recall that this slope is the zero of 8 and
BT, respectively. With the continuous w, this slope is 1. Its spectra must
touch the bisector since 7(1) = B(1) = 0. For u', on the other hand, the
slope of the tangent through the origin is strictly less than 1 since
B'(D) =0, D = —pB(0) being the dimension of the support of u.

This fact reflects the fundamentally different way of dealing with the
fact of “losing mass” when approximating the measure iteratively. With u',
loss of mass in the generating process is compensated by producing atoms
[compare (12)]; the contrary is true with  which is “renormalized” in each
step by a factor =7 in order to prevent it from dying out or exploding
(compare [24, p. 389)). [For equilibrium measures, the sets corresponding
to the intervals 1, ..., in (12) are obtained iteratively as the components

of the sets 4 "([0,1]).] This renormalization by e~ brings a shift in the
Holder exponents which causes the distinct yet closely related shape of the
spectra of u' and .

It is this different way of compensating mass which causes the failure of
the multifractal formalism for the inverse measure u'.
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