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In a previous paper the authors introduced the inverse measure m† of a
w xprobability measure m on 0, 1 . It was argued that the respective multifractal

†Ž . Ž .spectra are linked by the ‘‘inversion formula’’ f a s a f 1ra . Here, the state-
ments of the previous paper are put into more mathematical terms and proofs are
given for the inversion formula in the case of continuous measures. Thereby, f may
stand for the Hausdorff spectrum, the packing spectrum, or the coarse grained
spectrum. With a closer look at the special case of self-similar measures we offer a
motivation of the inversion formula as well as a discussion of possible generaliza-
tions. Doing so we find a natural extension of the scope of the notation ‘‘self-simi-
lar’’ and a failure of the usual multifractal formalism. Q 1997 Academic Press

1. INTRODUCTION

w xLet m be a probability measure on 0, 1 with its integral function
Ž . Žw x.M t s m 0, t . Then, M is increasing and right-continuous. The differen-

tial of the inverse function M † of M, defined as follows, is a probability
measure denoted by m†:

inf t : M t ) u , if u - 1,� 4Ž .† †w xm 0, u [ M u [Ž .Ž . ½ 1, if u s 1.
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We call m† the in¨erse measure of m. As M † is increasing and right-con-
tinuous, m† is again a probability measure.

We are interested in the relation between the spectra of m and m† and
w xpossible implications of such a connection. In 18 it was argued that the

respective spectra should related by the so-called inversion formula

f † a s a f 1ra . 1Ž . Ž . Ž .

The practical use of such a formula is most evident when dealing with
w xleft-sided spectra 14, 17, 27 since it allows us to transform the infinite

w xrange a , ` of Holder exponents of a left-sided spectrum into the finite¨min
w xrange 0, 1ra of a right-sided spectrum.min

A further application of the inversion formula is to self-similar mea-
sures, which reveals telling details on the multifractal formalism. Recall
that a compactly supported measure m is called self-similar iff

uy1
y1m s p m w ? , 2Ž . Ž .Ž .Ý i i

is0

where w , . . . , w are similarity maps of R d with contraction ratios,0 uy1
Ž .r g 0, 1 and where the probabilities p ) 0 satisfy p q ??? qp s 1. Asi i 0 uy1

w xHutchinson 9 showed, such measures exist and are unique even under the
weaker condition that the w are contractions.i

Ž . wProvided a condition on possible overlap in 2 holds, it can be shown 1,
x3, 7, 20, 25 that all reasonable definitions of the multifractal spectrum of

U Ž .m coincide. In particular, all spectra equal the Legendre transform b a
Ž Ž ..[ inf qa y b q of b , which is implicitly defined byq

uy1
q yb Žq.p r s 1. 3Ž .Ý i i

is0

Ž .It is easy enough to verify the inversion formula 1 for self-similar
w xmeasures with support 0, 1 . In this case we have r q ??? qr s 1 due0 uy1

w x Žw x.to 0, 1 s D w 0, 1 . A moments thought shows that the inverse measurei i
m† is self-similar with ratios r† s p and probabilities p† s r , whencei i i i

†Ž †. † Ž . Ž . Ž .q s yb q , q s yb q . Now, 1 follows immediately from f a s
Ž Ž ..inf qa y b q .q

Section 2 is devoted to the inversion formula in the case where m and m†

are continuous. We introduce the fine multifractal spectra f and f inH P
Ž .Section 2.1 and prove 1 for f and f in Section 2.2 In Section 2.3 weH P

comment on the ‘‘degenerated’’ Holder exponents 0 and `. In Section 2.4,¨
finally, we turn to the coarse grained spectrum f and the LegendreG
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spectrum f , comparing them to the fine multifractal spectra and establish-L
Ž .ing 1 for f .G

Revisiting the self-similar measures in Section 3 we leave the realm of
continuous measures by showing that self-similarity can be naturally ex-
tended to discontinuous measures. Doing so we find a class of invariant
measures for which the multifractal formalism does not hold, which means

Ž .that not all spectra coincide. This is a consequence of the fact that 1 fails
w x Ž .here for f , while 28 establishes 1 for f and f also in the case ofG H P

discontinuous measures.
Discussing possible generalizations, we compare discontinuous self-simi-

lar measures with equilibrium measures and comment on the second
multifractal phenomenon found with discontinuous self-similar measures:
there are ‘‘right-sided’’ multifractal spectra with a tangent through the
origin of slope strictly smaller than 1. This slope is directly related to the
particular way of renormalizing mass in an iterative construction of discon-
tinuous self-similar measures.

2. THE INVERSION FORMULA

2.1. Preliminaries

Let M be the distribution function of an arbitrary probability measure
w xon 0, 1 as in Section 1. In this section, an assumption will often appear

which can be stated in several equivalent ways:

v M is continuous and strictly increasing.

v
†w x w xM: 0, 1 ¬ 0, 1 is onto and one-to-one with inverse M .

v
†m and m are both continuous.

v m is continuous and no interval of positive length has zero m
measure.

Given a number a G 0, the set K is defined bya

log m IŽ .w xK [ t g 0, 1 : a t [ lim exists and equals a .Ž .a ½ 5< <log I� 4Iª t

Ž .The limit a t , if it exists, is called Holder exponent of m at t. Here,¨
� 4 Ž .I ª t means that I may run through any sequence I of intervalsk k g N

< <such that t g I for all k g N and such that I ª 0 as k ª `.k k

DEFINITION 1. The two fine multifractal spectra are the Hausdorff
spectrum and the packing spectrum which are given by

f a s dim K and f a s Dim K ,Ž . Ž . Ž . Ž .H a P a
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respectively, where dim and Dim denote the Hausdorff and the packing
dimension, respectively.

For completeness, we recall the definitions of the dimensions dim and
g Ž .Dim. Denoting by h E the g-dimensional Hausdorff measure of a set E,

i.e.,

g g g < <g < <h E s sup h E , h E s inf I : E ; I and I F d ,Ž . Ž . Ž . Ý Dd d k k k½ 5
dª0 N N

the Hausdorff dimension is defined as

dim E s inf g G 0: hg E s 0 s sup g G 0: hg E s ` .� 4 � 4Ž . Ž . Ž .
w xFollowing Tricot 30 one defines the g-dimensional packing premeasure by

p g E s inf p g E ,Ž . Ž .ˆ d̂
dª0

g < <g � 4p E s sup I : I is a d-packing of E .Ž .ˆ Ýd k k N½ 5
N

� 4Here, a d-packing I of E is a collection of mutually disjoint, openk N

balls, i.e., intervals, each of length less than or equal to d and each
intersecting E. Then the g-dimensional packing measure is given by

p g E [ inf p g E : E ; EŽ . Ž .ˆÝ Dn n½ 5
n n

Ž .the sets E are arbitrary here and the packing dimension is given byn

Dim E s inf g G 0: p g E s 0 s sup g G 0: p g E s ` .� 4 � 4Ž . Ž . Ž .
w xIn 18 , the inversion formula was established heuristically by a counting

Ž . yf Ža .argument, covering K by N « , a , « intervals of size « . As it wasa

Ž .argued, M maps these « intervals to N « , a intervals, each of length
approximately equal to « † [ « a, covering the set K †

† of points u witha
† † Ž .m -Holder exponent a s 1ra . Thus, N « , a should behave as ,¨

Ž †.yf †Ž1ra .« from which the inversion formula was deduced.
This proof will become rigorous for f and f by considering coveringsH P

of K by arbitrary sets I. A proof for f , however, cannot follow the samea G
lines because the coarse graining approach f estimates Holder exponents¨G
of intervals for which a precise relation corresponding to a † s 1ra
Ž .Lemma 4 is not available.

The first step in the proof is to establish that the operation m ¬ m† is
inverse to itself. This holds, though M † is not everywhere inverse to M.

w . Ž X. Ž . XLEMMA 2. Fix a t from 0, 1 . If M t ) M t whene¨er 1 G t ) t, then

M † M t s t .Ž .Ž .
†Ž Ž ..Otherwise, M M t ) t.
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Proof. By definition we have

M † M t s inf tX : M tX ) M t G sup tX : M tX s M t G t .� 4 � 4Ž . Ž . Ž . Ž . Ž .Ž .
Ž . Ž .This proves the inequality. Consider a sequence t o t. If M t ) M tn n

†Ž Ž ..for all n, we conclude M M t F inf t s t.n n

PROPOSITION 3. We ha¨e m†† s m; in other words, M †† s M.

Ž . ††Ž . � XProof. Take t - 1 and let u [ M t . Recall that M t s inf u :
†Ž X. 4M u ) t .

††Ž . X †Ž X.Assume first that M t - u . Then, we find u - u with M u ) t.
X †Ž X. X † Ž X . XTake t ) t with M u ) t . The definition of M implies M t F u -
Ž .u s M t , a contradiction to monotony.

††Ž . X †Ž X.Assume now that M t ) u . Then we find u ) u with M u F t.
X † Ž X. X XTake t ) t. The definition of M implies M t ) u . Letting t o t yields

XŽ .M t q G u ) u , a contradiction to right-continuity.

LEMMA 4. Assume that M is onto and one-to-one, or equï alently, that m
is continuous and non¨anishing. Then

t g K m M t g K † .Ž .a 1ra

† Ž .Proof. Consider any interval I containing u [ M t and let I [
y1Ž †. � 4 † � 4M I . Since I o t iff I o u and since

† † < <log m I log IŽ .
s ,†< < log m Ilog I Ž .

the claim follows.

2.2. Hausdorff and Packing Spectrum
† Ž .Because the operation m ¬ m is inverse to itself Proposition 3 ,

estimates in one direction only are sufficient. Therefore, we set

log m IŽ .w xF s t g 0, 1 : lim sup F a ,a ½ 5< <log I� 4Iª t

log m IŽ .w xG s t g 0, 1 : lim inf G a ,a ½ 5< <log I� 4Iª t

log m† I †Ž .
† †w x†K s u g 0, 1 : lim s a ,a †½ 5† < <log I� 4I ª u

and similarly for F †
† and G †

† .a a
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PROPOSITION 5. For any m and any subset A of G one hasa

dim A G a ? dim M A ,Ž . Ž .Ž .

pro¨ided 0 - a - `.

Proof. Fix a X - a and let

< < a
X

< <A s t g A: m I F I if t g I and I F 1rm . 4� 4Ž . Ž .m

Since A is a subset of G , we havea

A s A .D m
mG1

Note that for any interval I,

< <M I F m I , 5Ž . Ž . Ž .

even if M is not continuous. More precisely, if a is the left boundary point
< Ž . < Ž � 4.of an interval I, then M I s m I _ a since M is right continuous.
Ž . Ž� 4.Thus, we have equality in 5 iff I is left open or m a s 0.

� 4Let I be a covering of A by intervals of length less than 1rnj j m
Ž .n ) m and assume that all I intersect A . We havej m

X a
X

a< < < <M I F m I F I F 1rn .Ž .Ž . Ž .j j j

� Ž .4 Ž .Consequently, M I forms a covering of M A by intervals of lengthj j m

Ž .a
X

less than d [ 1rn and we findn

g ra
X

< <g ra
X

< <gh M A F M I F I .Ž .Ž . Ž .Ý Ýd m j jn

It is clear that the same estimate must hold also for arbitrary covers of
A . Thus,m

hg ra
X

M A F hg A F hg A F hg A ,Ž . Ž . Ž . Ž .Ž .d m 1r n m mn

Ž Ž .. Ž . Xwhich proves that dim M A F dim A ra . Recalling the s-stability ofm
Ž Ž .. Ž Ž ..Hausdorff dimension dim M A s sup dim M A , the claim followsm m

Xby letting a p a .

PROPOSITION 6. Assume that m is continuous and non¨anishing. Then

Dim A F a ? Dim M AŽ . Ž .Ž .

for any subset A of F , pro¨ided 0 F a - `.a
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Proof. In its basic structure this proof is very similar to Proposition 5.
Note, that a s 0 is allowed here. Fix a X ) a and let

< < a
X

< <A s t g A: m I G I if t g I and I F 1rm .� 4Ž .m

Since A is a subset of F , we havea

A s A .D m
mG1

Fix m for the moment and let E denote an arbitrary subset of A .k m
� 4Consider a 1rn-packing I of E which is a collection of mutuallyj j k

disjoint, open intervals, each of length less than or equal to 1rn and each
intersecting E . Since M and M † s My1 are continuous, the collection ofk

† Ž . Ž .all I [ M I provides a packing of M E . The central estimate isj j k

< † < < < a
X

I s m I G I ,Ž .j j j

Ž .which follows since we have equality in 5 . To get the obvious argumenta-
tion started, we need an upper estimate of the length of I †. Again, we usej
the continuity of M; more precisely, its uniform continuity. Choose d ) 0.

< < < Ž . <Then there is n such that I F 1rn implies M I F d .
� †4 Ž .In summary, I is a d-packing of M E . This allows us to estimatej j k

the g-dimensional packing premeasure p :ˆ

g < <g < <ga
X

p M E G M I G I .Ž .Ž .ˆ Ž .Ý Ýd k j j

� 4Since I is an arbitrary 1rn-packing, it follows thatj j

p g M E G p ga
X

E G p ga
X

E ,Ž . Ž . Ž .Ž .ˆ ˆ ˆd k d k k

g Ž Ž .. ga
XŽ .and letting d o 0, we obtain p M E G p E .ˆ ˆk k

Ž .In order to estimate the packing measure of M A , consider a count-m
Ž . † y1Ž † Ž ..able cover, say M A ; D E . Then the sets E [ M E l M Am k k k k m

form a cover of A . Since E ; A for all k, the previous reasoningm k m
applies, and by the definition of the packing measure,

p g E† G p g E† l M A G p ga
X

E G p ga
X

A .Ž . Ž . Ž .ˆ ˆ ˆŽ . Ž .Ý Ý Ýk k m k m
k k k

� †4 Ž .Taking the infimum over all possible covers E of M A we get, due tok m
A > A ,m

p g M A G p g M A G p ga
X

A .Ž . Ž . Ž .Ž . Ž .m m
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X Ž Ž .. Ž .This proves that a ? Dim M A G Dim A . Finally, the s-stability ofm
Ž . Ž .the packing dimension, i.e., Dim A s sup Dim A yields the claimm m

Xwhen letting a o a .

Ž .COROLLARY 7 Inversion formula . Assume that M is onto and one-to-
one, i.e., m is continuous and non¨anishing. For any subset A of K , we ha¨ea

dim A s a ? dim M A and Dim A s a ? Dim M A ,Ž . Ž . Ž . Ž .Ž . Ž .

pro¨ided 0 - a - `.

This corollary implies, in particular,

f † a † s dim K †
† s dim M K † s a † dim K † s a †f † 1ra † ,Ž . Ž .Ž . Ž .Ž . Ž .H a 1ra 1ra H

and similar for f .P

Ž . † †Ž Ž ..Proof. Note first that M A ; K by Lemma 4 and that M M A1r a

s A by Lemma 2. Applying Proposition 5 once to m and A ; K ; G ,a a
† Ž . † † Ž . Ž Ž ..and once to m and M A ; K ; G yields dim A G a dim M A1r a 1ra

Ž †Ž Ž ... Ž .G dim M M A s dim A . The argument for the packing dimension is
the same.

Remark 8. Proposition 5 could be used to establish the inversion
formula in general if it were not for a generalization of Lemma 4 which

w xappears to be cumbersome. In the context of 28 this generalization will
be achieved more naturally.

Remark 9. In the definition of K , F ??? all the intervals are consid-a a

ered. In certain situations, however, it is convenient to restrict attention to
a family JJ of intervals. If so, the sets K †

† , F †
† , and G †

† have to be defineda a a

using the images by M of the intervals in JJ, and the definitions of
dimensions on t- and u-axis have to be modified accordingly in order for
the inversion formula to remain valid.

2.3. Holder Exponents 0 and `¨
As will be demonstrated with self-similar measures, it becomes natural

to consider also the degenerate Holder exponents 0 and ` when dealing¨
with measures which can have atoms and gaps. It is worthwhile noting that
these values a s 0 and ` can occur not only in the trivial places where M
is constant or discontinuous, but also as nontrivial limits. As an example

w xwe refer to the left-sided multifractal presented in 14, 27 some of which
Ž .are continuous and nonvanishing and have Holder exponent ` Lebesgue¨

w xalmost everywhere 27, Example 1 .
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The sets of Holder exponent 0 or ` have to be treated separately, since¨
most of the results of the preceding section do not apply. Only the
following corollary to Proposition 6 is available:

COROLLARY 10. Assume that m is continuous and non¨anishing. Set

log m IŽ .w x � 4K [ t g 0, 1 : lim s 0 and m I ª 0 iff I ª t .Ž .0 ½ 5< <log I� 4Iª t

Then

dim K s Dim K s 0.Ž . Ž .0 0

The points with Holder exponent 0 which are not included in K are the¨ 0
atoms. Being countable, they always form a set of Hausdorff and packing
dimension 0.

Ž .The corresponding inversion result would be that M K has dimension0
1. This is not true in general, however, as K may be empty. Nevertheless,0
this phenomenon occurs}as we just mentioned}with left-sided infinitely
self-similar multifractals, at least if one restricts the eligible intervals I in

Ž . Ž .the definition of K , F , G , dim ? , and Dim ? to the ones which occura a a

Žnaturally in the construction of the measure. See Remark 9 at the end of
. Ž . Ž Ž ..Section 2.2. This fact, i.e., Dim K s 0 and dim M K s 1, reflects the0 0

fact that M is not Holder continuous of any order, though it is continuous.¨

2.4. The Coarse Grained Spectrum

In applications, f and f are often hard, if not impossible, to calculate,H P
and one might prefer to work with the spectra f and f obtained by aG L
coarse graining approach instead. We start by giving definitions and by
comparing the new notions with the fine multifractal spectra. Then we

w xcollect some results from 25, 26 which are used to show that the inversion
Ž .formula 1 holds also for f in the case of continuous and nonvanishingG

m. As follows from Section 3 this formula fails, though, for discontinuous
self-similar measures.

Ž .The coarse grained spectrum f a is defined byG

log N a , «Ž .d
f a [ lim lim sup ,Ž .G log 1rd«ª0 dª0

where N denotes the number of ‘‘intervals of size d with coarse Holder¨d

Ž . Ž . < <exponent exponent a B s log m B rlog B roughly equal to a .’’ As was
w xdescribed earlier in 22, 25 , the straightforward or naive way of counting

gives poor results in theory as well as in numerical application. Among the
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w xvarious possible improvements 26 , we favor the following for its simplic-
w Ž . .ity. Let H be the set of all intervals B s ld , l q 1 d with integer l andd

Ž . wŽ . Ž . .with m B / 0, and let B [ l y 1 d , l q 2 d . Then1

< < aq« < < ay«N a , « s a B g H : B F m B - B .� 4Ž . Ž .d d 1 1 1

Though tempting, it is wrong to interpret f as the box dimension of K .G a

The truth is that K has the same box dimension as its topological closurea

which is, in the case of self-similar measures, equal to the whole support of
the measure. In fact, letting K X [ G l F X and settinga , a a a

< < aq2 « < < ay2 « < <A [ t g K : I F m I - I if t g I and I F 1rm ,Ž .� 4m ay« , aq«

we find

� 4a B g H : B l A / B F N a , 2« , 6Ž . Ž .d m d

provided 3d - 1rm. Denoting the box dimension of a bounded set E by
Ž .D E , we have

� 4log a B g H : B l A / Bd m
D A [ lim supŽ .m log 1rddª0

log N a , 2«Ž .dF lim sup .
log 1rddª0

Ž . Ž . Ž . Ž w xIt is well known that dim E F Dim E F D E see Tricot 30 or Fal-
w x. Ž .coner 6 . Together with K ; K ; D A and Dim D Aa ay« , aq« m m m m

Ž . Ž . Ž . Ž .s sup Dim A , one concludes f a F f a F f a . If the box di-m m H P G
mension was s-stable like Hausdorff and packing dimension, one could

Ž . Ž . Ž .argue D D A s sup D A F f a . This is obviously not true form m m m G
Ž .self-similar measures where D A s supp m .m m

LEMMA 11.

f a F f a F f a .Ž . Ž . Ž .H P G

Ž .The spectrum f is related to the partition function t q ,G

q
logÝ m BŽ .B g H 1dt q [ lim inf ,Ž .

log ddª0

w xthrough the Legendre transform 25

t q s inf qa y f a . 7Ž . Ž . Ž .Ž .G
agR
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This relation holds also in the much more general context of Choquet
Ž w x.capacities see Levy-Vehel and Vojak 12, Theorem 3 . The tentative

Ž .inversion formula 1 translates to

q† s yt , t † s yq. 8Ž .

w Ž . Ž .xMost evidently it holds for self-similar measures compare 3 and 10 . In
Ž .general, however, 8 may fail, as is the case with discontinuous self-similar

measures.
Ž .It is natural to introduce the Legendre transform of t q as a further

multifractal spectrum:

f a [ t U a s inf qa y t q .Ž . Ž . Ž .Ž .L
qgR

Ž .An equivalent form of 7 is to say that f is the concave hull of f .L G
Consequently:

LEMMA 12. For all a ,

f a F f a ,Ž . Ž .G L

w xwith equality in points of strict conca¨ity. Moreo¨er 26 ,

f aq s qaqy t q q ) 0 ,Ž . Ž . Ž .G
9Ž .

y yf a s qa y t q q - 0 ,Ž . Ž . Ž .G

q XŽ . y XŽ .where a [ t q q and a [ t q y denote the one-sided derï atï es of
Ž .t q .

We say that the multifractal formalism holds for a given measure m if the
inequalities in Lemmata 11 and 12 can be replaced by equalities. To
establish this formalism under various assumptions has been a point of

w xmajor interest in multifractal analysis 1, 20, 25 . In general, however, the
Ž .estimate 6 can clearly be sharp, meaning that an interval B can show a

Ž .coarse Holder exponent a although it contains no point t with a t s a .¨
The most simple example of this kind is the absolutely continuous

Ž . w x Ž . 2 Ž .measure m with density f t s t on 0, 1 , i.e., M t s t r2. Here, a t s 1
Ž . Ž . Ž .for 0 - t F 1 and a 0 s 2; hence f 1 s 1, f 2 s 0 and K is empty,H H a

Ž .otherwise. A direct calculation shows, on the other hand, that f a s 2G
y a for 1 F a F 2. What seems to be a paradox is readily explained:

Ž . < <while log m I rlog I tends to 1 for all t ) 0 in the limit, a coarse graining
on any ‘‘pre-asymptotic’’ level d ) 0 will show a nontrivial distribution of
Holder exponents. The striking difference between f and f in this¨ H G
example expresses the strong nonuniformity of the convergence of the

Ž .Holder exponents a t . Further examples of this kind are found with the¨
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inverse measures of self-similar measures which are presented in Section
3.

Consider now a continuous, nonvanishing measure m and its inverse
measure m†. In order to compute f † one divides the u-axis into intervals ofG
equal lengths. Since M and M † are continuous, this translates into

Ždividing the t-axis into intervals of equal m-measure. Note that this is not
.true for discontinuous measures m. This kind of partitioning of the t-axis

is exactly the procedure used when computing the so-called fixed mass
w xspectrum f of m. As is shown in 26 , f is related to f by the formulaFM FM G

f a s a f 1ra ,Ž . Ž .G FM

where f is strictly concave. We conclude:G

PROPOSITION 13. Let m be continuous and non¨anishing. Then the
in¨ersion formula holds for f in points a where it is strictly conca¨e.G

COROLLARY 14. Assume that m is continuous and non¨anishing with
strictly conca¨e f . Then the multifractal formalism f s f holds either forG H G
both m and m† or for neither.

3. SELF-SIMILAR MEASURES

Ž .Let m be a self-similar measure as in 2 :

uy1
y1m E s p m w E .Ž . Ž .Ž .Ý i i

is0

Ž .As a condition on possible overlap we will assume that 0, 1 satisfies the
ŽŽ ..open set condition, which means that w 0, 1 are mutually disjoint subsetsi

Ž . w xof 0, 1 . It is then easy to see that the unit interval 0, 1 is divided into u
Ž .subintervals V i s 0, . . . , u y 1 , the length and mass of which are the ri i

w xand p fractions of their ‘‘parent interval’’ 0, 1 . The same applies to thei
subintervals, and iteratively ad infinitum. More precisely, for all n g N the
mass of m is located on un intervals V of length r ??? r and« ? ? ? « « «1 n 1 n

Ž . Ž .mass p ??? p . Define the convex function b q as in 3 :« «1 n

uy1
q yb Žq.p r s 1.Ý i i

is0
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Ž .Then the following holds see Sections 2.2 and 2.4 for notation : The
Ž . Ž .partition function t q equals b q , and the multifractal spectra all

coincide. In summary,

f a s f a s f a s f a s t * a s b U aŽ . Ž . Ž . Ž . Ž . Ž .H P G L

q b X q y b q , for a s b X q ,Ž . Ž . Ž .s 10Ž .½ y`, otherwise.

w xFirst results in this direction are found with Kahane and Peyriere 10 ,`
w x w x w x w xCawley and Mauldin 3 , Falconer 7 , Olsen 20 , and Riedi 25 . In the

Ž .stated form, 10 is a special case of the result by Arbeiter and Patzschke
w x1 .

3.1. The In¨erse of Self-Similar Measures: Continuous Case

Ž . w xHere, we assume that the support of m, denoted supp m , is all of 0, 1 .
w Ž . Ž Ž ..xAs a self-similar set supp m s D w supp m it must have dimensioni i

Ž . Ž . w xD s yt 0 s yb 0 9 . But D s 1 here, which is equivalent with Ýr s 1.i
In this case, the inverse measure m† is obtained simply by exchanging

the ratios r , . . . , r and the probabilities p , . . . , p . In other words,0 uy1 0 uy1
† Ž .m is self-similar with probability vector r , . . . , r and with the unique0 uy1

linear maps w† which have the same orientation as w and for whichi i
†Žw x. w x Ž .w 0, 1 s p q ??? qp , p q ??? qp . Since 3 establishes a one-to-i 0 iy1 0 i

one relation between b and q, we obtain b † s yq, q† s yb. Applying
Ž . † Ž . Ž .10 to m and m this yields 8 immediately, and the inversion formula 1
follows for all spectra by writing

b U a s inf qa y b q s a inf q y braŽ . Ž . Ž .Ž .
q q

U† † †s a inf q ra y b s a ? b 1ra .Ž .Ž . Ž .
q

w xPROPOSITION 15. For self-similar measures supported on 0, 1 the in¨er-
Ž .sion formula 1 holds for all four spectra f , f , f , and f .H P G L

3.2. Discontinuous Self-Similar Measures

Ž . Ž .In this case supp m has dimension D s yt 0 - 1, consequently Ýri
- 1. Consider

ry1

w x w x0, 1 w 0, 1 .Ž .D i
is0

This set has at the most u q 1 components which are open intervals. It is
Ž . Ž .obvious how to define maps w j s u, . . . , ¨ y 1 such that 0, 1 is still anj
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open set and such that r q ??? qr s 1. We assign the probabilities0 ¨y1
Ž . †p s 0 j s u, . . . , ¨ y 1 to the new maps and define w as before. Thenj i

† † † Ž † † .m is invariant under w , . . . , w with probability vector p , . . . , p0 ¨y1 0 ¨y1
Ž .s r , . . . , r . As we will show in an example, the newly added maps0 ¨y1

w†, . . . , w† are constant functions and create the atoms of which m†
u ¨y1

consists. With this procedure we have actually performed the step toward
generalized self-similar measures which may include vanishing probabili-
ties andror vanishing contraction ratios, hence, toward discontinuous
self-similar multifractals.

EXAMPLE 1. Consider a Cantor measure m , i.e., a self-similar measureC
Ž . Ž .with u s 2, w t s r t, w t s r t q 1 y r , where we assume r q r - 1,0 0 1 1 1 0 1

and p s p s 1r2. Then, the inverse measure m† is invariant under the0 1 C
†Ž . †Ž . †Ž .maps w u s ur2, w u s 1r2, and w u s ur2 q 1r2 with probabili-0 2 1

ties p† s r , p† s r , and p† s 1 y r y r . By invariance of m† or di-0 0 1 1 2 0 1 C
rectly from the definition of M † it follows that w† creates an atom at2

† Ž .u s 1r2 of mass p corresponding to the gap r , 1 y r in the support of2 0 1
m . Iterating, we find that other atoms are present, corresponding to theC

Ž .gaps of supp m at the various scales. Moreover, since the length of theseC

gaps adds up to 1, so must the masses of the atoms and m† is purelyC
atomic.

An analysis of the Holder exponents of m† starts with the simple¨
observation that the Holder exponent 0 is assumed in the atoms. In other¨

†Ž . †words, a u s 0 m -almost surely. Alternatively, in the language of the
Ž †.XŽ . Ž .specialist, D [ y t 1 s 0. Assuming that the inversion formula 1 is1

†Ž .valid in general, it is also easy to determine the Holder exponents a u /¨
Ž .0. Instead of giving a general proof of 1 , though, we would like to give an

intuition of the singular behavior of m† in points other than atoms.
To this end, one has to consider a measure m† which concentrates on as

Ž †suitable subset of nonatomic points. We use the letter s instead of q for
.ease of notation. This ‘‘zooming in,’’ however, is only useful for f and f :H P

since they are defined pointwise they provide a ‘‘local’’ analysis. It has no
implication on f , which is defined in ‘‘global’’ terms. The reader familiarG

Ž w x.with the usual arguments in this context see e.g., 3, 25 will not be
surprised that this measure m† is closely related to the inverse measure ofs
m , the measure which concentrates on the points of m-Holder exponent¨q

XŽ .a s b q . The value of q being fixed, m is a self-similar measureq q

Ž . q yblike m itself, with the only difference that its probabilities in 2 are p ri i
rather than just p .i

Translating this to m†, fix a real number s and let m† be the self-similars
measure invariant under w† , . . . , w† and with the probabilities0 uy1

s yg† † † s ygp [ p r s r p i s 0, . . . , u y 1 .Ž .Ž . Ž .i i i i i
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†Here, g has to be chosen such that the new probabilities p sum up to 1,i
i.e.,

uy1 uy1
s yg† † s ygp r s r p s 1.Ž . Ž .Ý Ýi i i i

is0 is0

Ž † .We use the letter g instead of b for ease of notation. With the
x Ž . Ž .convention 0 [ 0 for all x, the definition of g generalizes 3 . By 3 we

find the same simple relation between the auxiliary functions of m and m†

as in the continuous case:

g yb q s yq.Ž .Ž .

Note, that we disregard the additional maps since we want to avoid atoms.
This has the further advantage of providing a natural encoding of
nonatomic points u by infinite sequences of intervals V † which are« ? ? ? «1 n† † Žnondegenerate, i.e., of length r ??? r ) 0. In the simple case of the« «1 n

inverse Cantor distribution, where u s 2 and r† s r† s 1r2, this is exactly0 1
. w xthe binary representation of u . Following the usual arguments 3, 25 , one
†Ž . †writes the Holder exponents a t of m as¨

log p† ??? p† 1rn Ýn log p†Ž .« « ks1 «1 n k†a t s lim s lim .Ž . † † n †log r ??? r 1rN Ý log rnª` nª` Ž .« « ks1 «1 n k

w † xŽ . †Clearly, the Holder exponents a m t of m can be written in a similar¨ s s
† †fashion, replacing p by p .i i

Ž . †The Law of Large Numbers LLN implies now that for m -almost all t,s

† uy1 † †E log p Ý p log ps i is0 i i X† †a t s s s g s \ a ,Ž . Ž . s† uy1 † †E log r Ý p log rs i is0 i i

and, simultaneously,

† uy1 † †E log p Ý p log ps i is0 i i X U† †a m t s s s s ? g s y g s g a .Ž . Ž . Ž .s s† uy1 † †E log r Ý p log rs i is0 i i

† † Ž .Fixing a s a s g 9 s for the ease of notation, the first property impliess
that K †

† has full m†-measure. The second property means that m† isa s s
U Ž †.equivalent to the g a -dimensional Hausdorff measure restricted tos

† Ž † . U Ž †.† †K , allowing the estimate dim K G g a . A completely rigorousa a

w xargument, which is beyond the scope of this paper, is contained in 28 . It
w x † wapplies the main result of 1 to m . Finally, the usual covering methods 7,s

xLemma 4.3; 27, Proposition 4; 28, Theorem 16 yield the upper bound for
Ž † .†dim K . In summary,a
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PROPOSITION 16. The in¨ersion formula for discontinuous self-similar
measures holds for f and f :H P

f † a † s f † a † s g U a † s a †b * 1ra † s a †f 1ra † .Ž . Ž . Ž . Ž . Ž .H P H

Ž .A special role is played by the zero of g , i.e., g D s 0, where

uy1
Dr s 1.Ý i

is0

Ž .To the contrary, with b where b 1 s 0, the zero of g will be strictly less
than 1. This is, of course, just another way of expressing that the support of
m has dimension D less than 1. Again in other words, while m s m, none1
of the m† will coincide with m†. A self-similar measure constructed with thes
probabilities p† would ‘‘die out.’’ To obtain a nontrivial distribution usingi
p†, the mass of the intervals V † had to be normalized on each level n.i « ? ? ? «1 n

This could be achieved in the way it is done with equilibrium measures of
Ž .dynamical systems compare Section 3.6 or by ‘‘putting mass aside in

atoms’’ as it is done with discontinuous self-similar measures. Let us be
more specific.

For the Cantor distribution, e.g., the mass of m† at a given level n isC
distributed as atoms in the dyadic points of order n and in the intermedi-
ate open intervals. The evolution of the mass in these intervals follows the
rules of a multiplicative process with probabilities p† and p†.0 1

This has immediate and important consequences for the partition func-
tion t †. For s ) D, the contribution coming from these ‘‘intermediate’’
intervals is overwhelmed by the constant contribution of the atoms; the
contrary is true for s - D.

Ž .PROPOSITION 17. For the Cantor measure m Example 1 and its in¨erseC
measure m† we ha¨eC

ylog r s q r s , for s F D ,Ž .† 2 0 1t s s 11Ž . Ž .½ 0, otherwise.

Ž . Ž .Comparing this with 10 and 3 it becomes apparent that the in¨ersion
Ž .formula 8 holds exactly in the region s F D, i.e., q F 0.

Proof. First note that it is sufficient to consider grids H of sizen
n w x † w x wŽ . nd s 1r2 25 . The support of m is all of 0, 1 , so all intervals l y 1 r2 ,C

Ž . n.l q 2 r2 contribute. Consider a dyadic point u of order n, i.e., u s .«1
??? « in dyadic representation. For u / 0 we haven

† n † � 4m u , u q 1r2 s r ??? r and m u s r ??? r ? r , 12Ž . Ž .Ž . Ž .C « « C « « 21 n 1 ky1
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� 4where k s max l F n: « s 1 . We may call k the minimal dyadic order ofl
u since u s .« ??? « is the shortest possible dyadic representation of u .1 k
From this, it becomes clear that the atoms at the left boundary point
dominate the measure of the intervals from H . Writing such intervals asn
w yn .u , u q 2 with u as the preceding text, we find

ny1
s s† ynm u , u q 2 s j r ??? r. Ž .Ž .Ý Ý ÝC n « «1 k

kus .« ??? « ks0 � 4« ??? « g 0, 11 n 1 k

ny1
nk Xs s s ss j r q r s j 1 y r q r ,Ž . Ž .Ž .Ýn 0 1 n 0 1

ks0

where the error terms j and j X are bounded independently of n, i.e., jn n n
s Ž . s X Ž s s.lies between r and r q max r , and j s 1 y r y r j . Finally, we2 2 i i n 0 1 n

stress that we do not have to pass to the enlarged intervals B since m† is1 C
supported on an interval. Instead of giving a general proof, we provide a
short argument adapted to this case.

First, it follows by induction that among two neighboring atoms the one
with the smaller ‘‘minimal dyadic order’’ has the larger mass. Using this
fact and denoting by u the dyadic point with largest mass in B , one1

† Žw yn .. † Ž . Y † Ž� 4. Y † Žwobtains that m u , u q 2 F m B F 3j m u F 3j m u , u qC C 1 n C n C
yn .. Y 1r22 with j bounded as j . Estimating for all B in this way, onen n

obtains a new sum where none of the u of order n will contribute, but all
of order F n y 1 contribute at least once and at most three times. Hence,

† Ž . s Z Ž Ž s s.ny1. ZÝ m B s j 1 y r q r with bounded j . This completesB g H C 1 n 0 1 nn

the proof.

PROPOSITION 18. For the coarse grained spectrum f † of the in¨erseG
measure m† of the Cantor distribution m we findC C

D ? a for 0 F a F g X D ,Ž .
† †f a s f a sŽ . Ž . XG L †½ f a , for a s g s and s - D.Ž . Ž .H

Ž xProof. Take an arbitrary number n g 0, 1 . We will show that a lower
†Ž .bound on f a is found in the Legendre transform of n ? g , i.e., inG

† Ž . † Ž . †Ž .n ? f arn . Proposition 17 yields sup n f arn s f a , whence f GH n F1 H L G
f , and the claim follows from Lemma 12.L

n w xAgain, we can restrict our attention to d s 1r2 25, 26 and to
Ž . Ž .nonenlarged dyadic intervals B see the preceding proof . From 12 we

get the distribution of Holder exponents immediately. Looking at those u¨
? @with k s n n , the largest integer smaller than n n, we derive the necessary

estimate.
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To do so, however, we will need a large derivation result of Ellis-Gartner
w x † Ž .5 . Define random variables X s log m B , where B is chosen ran-n C
domly, i.e., each with probability 1r2 k, out of those intervals from H n1r2

? @with left boundary point u being dyadic of minimal order k s n n . First,
Ž .we need the moment generating function of X . By 12 ,n

sykc s [ E exp sX s j 2 ? r ??? r ,Ž . Ž . Ž .Ýn n n « «1 ky1
ky1� 4« ??? « g 0, 11 ky1

where j is bounded. Letting a [ n log 2 we find thatn n

1 k y 1 k
s sc s [ lim log c s s lim log r q r yŽ . Ž . Ž .n 2 0 1a n nnª` nª`n

s yng s y n .Ž .

w xThis being a convex and differentiable function, Ellis’ Theorem II.2 5
Ž . Ž .applies. Denote by P U the probability that 1ra X lies in U for an n n

randomly picked B. If U is open, then

log P UŽ .nyI U F lim inf ,Ž .
anª` n

Ž . � Ž . 4 Ž . Ž Ž ..where I U [ inf I a : a g U and I a s sup sa y c s . Choosings
Ž . Ž . yk Ž . Ž .U s ya y « , ya q « we have P U F 2 N a , « since 1ra X isn d n nn

the coarse Holder exponent of B. Noting that¨

I a s y inf c s y sa s yn inf s yarn y g s y 1Ž . Ž . Ž . Ž .Ž . Ž .
s s

s yn f † yarn y 1 ,Ž .Ž .H

we obtain

log N a , «Ž .dX X n†n sup f a rn : a y « - a - a q « F lim inf .Ž .� 4H anª` n

† Ž .By continuity the left-hand side tends to n f arn as « ª 0 from whichH
†Ž . † Ž .f a G n f arn . The proof is complete.G H

w xUsing techniques introduced in 26 , in particular the so-called semispec-
tra, one can use f F f and the estimate of lim inf given previously toG L d ª 0
show that the lim sup is actually a limit.d ª 0

Nothing is special about m in Propositions 17 and 18. Apart fromC
technical details the same proofs work for general self-similar measures as

w xis shown in 28 .
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3.3. Impact on the Multifractal Formalism

A weak form of the so-called multifractal formalism is said to hold if

f s f .G L

Ž .Compare Lemma 12. Examples to which the formalism applies are the
w x‘‘classical’’ self-similar measures 1, 20, 25 , as well as the discontinuous

† w xones as we just saw for m and as is shown in general in 28 . The linearC
part we found with the spectrum f † of m† is a consequence of theG C
presence of a whole hierarchy of atoms which produces a nontrivial range
of ‘‘frequently occurring’’ coarse Holder exponents.¨

The more important strong form of the multifractal formalism states
that

f s f .H G

Ž .Compare Lemma 11. This property has been shown to hold for quite
Ž . Žgeneral constructions of random self-similar measures see Arbeiter and

w x w x w xPatzschke 1 , Olsen 20 , and Lau and Ngai 11 and also Kahane and
w x w x w x.Peyriere 10 , Cawley and Mauldin 3 , and Falconer 7 , as well as in the`

Ž w x w xcontext of dynamical systems see Rand 24 , and Pesin and Weiss 21 and
w xalso Brown, Michon, Peyrere 2 , as well as Collet, Lebovitc, and Porcio`

w x.4 .
For m† , however, we findC

f † s f † / f † s f †.H P G L

The difference between fine multifractal spectra and coarse grained spec-
trum expresses, therefore, the strong dependence of the convergence rate

†Ž . < < †Ž . † †of log m I rlog I ª a u on u , yet f is the concave hull of f . ThisG H
w xfact confirms our point of view which is to include all points of 0, 1 and,

hence, also the vanishing Holder exponents in the fine multifractal spectra.¨
Otherwise, a convincing connection between f † and f † would not exist.G H

3.4. Conser̈ atï e Random Case

w xThe random self-similar measures F considered in 1, 7, 10, 15, 20 are
obtained by randomizing the usual multiplicative process as follows. Take

� 4N � 4na code space 0, . . . , u y 1 . To each finite sequence i g D 0, . . . , u y 1n
assign independent random variables r and p such that ri i i ? ? ? i1 n

and p are of equal distribution as r and p , respectively, and suchi ? ? ? i i i1 n n n

that Ý p s 1 almost surely. When assuming in addition that Ýr s 1i i
almost surely there is no difficulty in understanding the construction of a

Ž .random self-similar measure generalizing 2 . The inverse random measure
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F† is obtained simply by exchanging the random variables r and p . Doingi i
so, corresponding realizations will indeed be inverse to each other.

w xThus, provided the open set condition holds, the results of 1, 7, 20
Ž .imply the inversion formula 1 for the fine multifractal spectra f and f .H P

Ž .Note that we have f s f s max f , 0 . Using large deviation principlesH P L
w x Ž . Ž .26 shows that a properly defined f satisfies f a s f a for all a .G G L
This yields the inversion formula for the coarse graining approach.

w x Ž .In 16 negative values f a - 0 have been called negatï e dimensionG
Ž .for reasons of analogy. One should keep in mind, however, that f a isG

Ž .not a dimension in the strict sense compare Section 2.4 . If negative,
Ž .f a cannot be a ‘‘counting function’’ either. The correct interpretation isG

Ž .as follows: The probability that the coarse Holder exponent log m I r¨
< <log I , a for a random measure m and a randomly picked interval I from

the d-grid is roughly equal to d 1y fGŽa .. Since there are only dy1 such
intervals, one has to sample m itself d fGŽa . times in order to ‘‘observe’’ the
Holder exponent a .¨

3.5. Higher Embedding Dimension

A generalization to self-similar measures in d-dimensional Euclidean
space is possible in special cases. In order to carry out a construction
analogous to the one-dimensional case, one will assume in a first case that

w xdthe measure is supported on the unit d-cube 0, 1 . Then it is straightfor-
ward to define an ‘‘inverse’’ measure on the u-line, making the natural
choice p† s r d, r† s p . An adapted form of the inversion formula willi i i i

Ž .hold due to 3 , when adding the term d at the right places.
There is a freedom in choosing the order of the maps w†. In addition,i

w xthe inverse measure will live on the interval 0, 1 . This reflects the fact
that the spectra of self-similar measures depend in fact very little on the
geometry of the construction, i.e., only on the numbers r and p , and oni i
respecting a separation condition.

This comes to its extreme when the measure lives on a fractal set of
dimension D. One may then construct an inverse self-similar measure

† D Ž .using p s r destroying the usual inversion formula or by adding mapsi i
with zero probability as in Section 3.2. It has to be assumed, then, that

Ž wthe extended family produces a tiling of the space. See Strichartz 29,
x .Theorem 5.2 and references therein. More general cases might become

treatable when considering infinite systems of maps; see Mauldin and
w x w xUrbanski 19 and Riedi and Mandelbrot 27 . In any case, it is not clear

how to interpret the inverse measure.
w xA generalization to vector-valued self-similar measure 8 in d-dimen-

sional Euclidean space might appear more natural. Again, a procedure is
only clear in very special cases and similar problems as mentioned arise. A
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duality as desired between two vector-valued self-similar measures can be
w xfound, e.g., in the following situation. In the notation of 8 assume that

w xd Ž .0, 1 is self-similar under the maps S i s 0, . . . , u y 1 as well as underi
† Ž . Ž . Ž †.d †Ž . dS i s 0, . . . , ¨ y 1 . Let T x [ r ? x and T x [ r ? x. Then thei i i i i

w xinversion formula holds due to the results of Falconer and O’Neil 8 ,
again provided that the term d has been added at the right places.

3.6. Equilibrium Measures

A natural generalization of the notion of self-similar measures are the
equilibrium measures which appear in the theory of dynamical systems. In
a typical situation on the line, one will consider a conformal mapping g

w x w x < X <which maps some disjoint intervals I ; 0, 1 onto 0, 1 such that ylog gi
is negative and Holder continuous. The invariant measure in question will¨
then live on the repeller of g ; more precisely, it will be the equilibrium
measure of another Holder continuous function f. This scheme reduces to¨
the self-similar case if g is such that the w are its inverse branches and ifi
f takes the constant value log p on I .i i

The multifractal formalism

Ž . Ž . w xf a s f a has been established for cookie-cutters by Rand 24 andH L
for equilibrium measures of certain Moran constructions by Pesin and

w x Ž � 4.Weiss 21 . Set c s exp f y P f with P denoting the pressure function
Ž .and let b be uniquely defined through

< X <P q log c y b ylog g s 0.� 4Ž .

Then, t equals b and the spectra of m collapse with the Legendre
U Ž .transform b . Note that the definition of b reduces to the usual one 3

in the self similar case.

Reciprocal equilibrium measures

It is tempting to produce new measures analogously to self-similar
< X <measures, i.e., to exchange the roles of ‘‘geometry’’ ylog g and ‘‘mass’’ f,

and to compare this procedure with the inversion. Assume, therefore, that
< X <f s ylog h for some function h with properties analogous to g. Denote

X< <the h-invariant equilibrium measure corresponding to f [ ylog g by m.
First, the fine multifractal spectra of m† can be obtained through the

w xinversion formula 28 ; hence, by taking the Legendre transform of the
y1 Ž .inverse b . In analogy with 11 , especially since gaps are present, we

† � y1 4conjecture that the partition function of m equals min b , 0 .
Second, being an equilibrium measure, m has its fine multifractal

XU � Ž < <..spectra equal to b where, as before, P t log c y b ylog h s 0 with
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†Ž � 4.c s exp f y P f . Though very closely related, the spectra of m and m
y1 � 4 � 4are very well distinguished, i.e., b / b , unless P f and P f vanish.

However, this is the degenerate case when m and m are supported on all
w xof 0, 1 .

Special feature of the spectra
†One particular difference between the spectra of m and m is the slope

of their tangent through the origin. Recall that this slope is the zero of b and
†b , respectively. With the continuous m, this slope is 1. Its spectra must

†Ž . Ž .touch the bisector since t 1 s b 1 s 0. For m , on the other hand, the
slope of the tangent through the origin is strictly less than 1 since

†Ž . Ž .b D s 0, D s yb 0 being the dimension of the support of m.
This fact reflects the fundamentally different way of dealing with the

fact of ‘‘losing mass’’ when approximating the measure iteratively. With m†,
loss of mass in the generating process is compensated by producing atoms
w Ž .xcompare 12 ; the contrary is true with m which is ‘‘renormalized’’ in each
step by a factor eyP in order to prevent it from dying out or exploding
Ž w x. wcompare 24, p. 389 . For equilibrium measures, the sets corresponding

Ž .to the intervals V in 12 are obtained iteratively as the components« ? ? ? «1 n
ynŽw x. x yPof the sets h 0, 1 . This renormalization by e brings a shift in the

Holder exponents which causes the distinct yet closely related shape of the¨
†spectra of m and m.

It is this different way of compensating mass which causes the failure of
the multifractal formalism for the inverse measure m†.
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