142 research outputs found

    Current Status and Future Opportunities for Controlling Acromegaly

    Full text link
    Growth-hormone (GH) secreting adenomas, including acromegaly, account for approximately one-sixth of all pituitary adenomas and are associated with mortality rates at least twice that of the general population. The ultimate goal of therapy for acromegaly is normalization of morbidity and mortality rates achieved through removal or reduction of the tumor mass and normalization of insulin-like growth factor I (IGF-I) levels. Previously published efficacy results of current treatment modalities (surgery, conventional radiation, and medical therapy with dopamine agonists and somatostatin analogs) are often difficult to compare because of the different criteria used to define cure (some of which are now considered inadequate). For each of these modalities, pooled data from a series of acromegaly studies were reviewed for rates of IGF-I normalization, a currently accepted definition of cure. The results showed overall cure rates of approximately 10% for bromocriptine, 34% for cabergoline, 36% for conventional radiation, 50–90% for surgery for microadenomas and less than 50% for macroadenomas, and 54–66% for octreotide. These cure rates based on IGF-I normalization are generally less than those reported for cure based solely on GH levels. Novel new therapies for acromegaly include the somatostatin analog, lanreotide, Gamma Knife radiosurgery, and pegvisomant, the first in its class of new GH receptor antagonists. Although it does not appear that Gamma Knife radiosurgery results in significantly higher cure rates or fewer complications, it does provide a notable improvement in delivery compared with conventional radiation. Early studies have reported IGF-I normalization in 48% of lanreotide-treated patients and up to 97% of pegvisomant-treated.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47523/1/11102_2004_Article_5120841.pd

    Patient-reported outcomes of parenteral somatostatin analogue injections in 195 patients with acromegaly.

    Get PDF
    This work is licensed under a Creative Commons Attribution 3.0 Unported LicenseBACKGROUND: Long-acting somatostatin analogues delivered parenterally are the most widely used medical treatment in acromegaly. This patient-reported outcomes survey was designed to assess the impact of chronic injections on subjects with acromegaly. METHODS: The survey was conducted in nine pituitary centres in Germany, UK and The Netherlands. The questionnaire was developed by endocrinologists and covered aspects of acromegaly symptoms, injection-related manifestations, emotional and daily life impact, treatment satisfaction and unmet medical needs. RESULTS: In total, 195 patients participated, of which 112 (57%) were on octreotide (Sandostatin LAR) and 83 (43%) on lanreotide (Somatuline Depot). The majority (>70%) of patients reported acromegaly symptoms despite treatment. A total of 52% of patients reported that their symptoms worsen towards the end of the dosing interval. Administration site pain lasting up to a week following injection was the most frequently reported injection-related symptom (70% of patients). Other injection site reactions included nodules (38%), swelling (28%), bruising (16%), scar tissue (8%) and inflammation (7%). Injection burden was similar between octreotide and lanreotide. Only a minority of patients received injections at home (17%) and 5% were self-injecting. Over a third of patients indicated a feeling of loss of independence due to the injections, and 16% reported repeated work loss days. Despite the physical, emotional and daily life impact of injections, patients were satisfied with their treatment, yet reported that modifications that would offer major improvement over current care would be 'avoiding injections' and 'better symptom control'. CONCLUSION: Lifelong injections of long-acting somatostatin analogues have significant burden on the functioning, well-being and daily lives of patients with acromegaly.Chiasma, Inc. 60 Welles Ave, Newton, MA 02 459, USA

    Instrumentation and Measurement Strategy for the NOAA SENEX Aircraft Campaign as Part of the Southeast Atmosphere Study 2013

    Get PDF
    Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeastern US. In addition, anthropogenic emissions are significant in the southeastern US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were all within the stated uncertainties, except two of the three NO 2 measurements. The SENEX flights included day- and nighttime flights in the southeastern US as well as flights over areas with intense shale gas extraction (Marcellus, Fayetteville and Haynesville shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions

    Clinical impact of genomic testing in patients with suspected monogenic kidney disease

    Get PDF
    Purpose: To determine the diagnostic yield and clinical impact of exome sequencing (ES) in patients with suspected monogenic kidney disease. Methods: We performed clinically accredited singleton ES in a prospectively ascertained cohort of 204 patients assessed in multidisciplinary renal genetics clinics at four tertiary hospitals in Melbourne, Australia. Results: ES identified a molecular diagnosis in 80 (39%) patients, encompassing 35 distinct genetic disorders. Younger age at presentation was independently associated with an ES diagnosis (p < 0.001). Of those diagnosed, 31/80 (39%) had a change in their clinical diagnosis. ES diagnosis was considered to have contributed to management in 47/80 (59%), including negating the need for diagnostic renal biopsy in 10/80 (13%), changing surveillance in 35/80 (44%), and changing the treatment plan in 16/80 (20%). In cases with no change to management in the proband, the ES result had implications for the management of family members in 26/33 (79%). Cascade testing was subsequently offered to 40/80 families (50%). Conclusion: In this pragmatic pediatric and adult cohort with suspected monogenic kidney disease, ES had high diagnostic and clinical utility. Our findings, including predictors of positive diagnosis, can be used to guide clinical practice and health service design

    A prospective longitudinal study of Pasireotide in Nelson's syndrome

    Get PDF
    PURPOSE: Nelson's syndrome is a challenging condition that can develop following bilateral adrenalectomy for Cushing's disease, with high circulating ACTH levels, pigmentation and an invasive pituitary tumor. There is no established medical therapy. The aim of the study was to assess the effects of pasireotide on plasma ACTH and tumor volume in Nelson's syndrome. METHODS: Open labeled multicenter longitudinal trial in three steps: (1) a placebo-controlled acute response test; (2) 1 month pasireotide 300-600 μg s.c. twice-daily; (3) 6 months pasireotide long-acting-release (LAR) 40-60 mg monthly. RESULTS: Seven patients had s.c. treatment and 5 proceeded to LAR treatment. There was a significant reduction in morning plasma ACTH during treatment (mean ± SD; 1823 ± 1286 ng/l vs. 888.0 ± 812.8 ng/l during the s.c. phase vs. 829.0 ± 1171 ng/l during the LAR phase, p < 0.0001). Analysis of ACTH levels using a random intercept linear mixed-random effects longitudinal model showed that ACTH (before the morning dose of glucocorticoids) declined significantly by 26.1 ng/l per week during the 28-week of treatment (95% CI - 45.2 to - 7.1, p < 0.01). An acute response to a test dose predicted outcome in 4/5 patients. Overall, there was no significant change in tumor volumes (1.4 ± 0.9 vs. 1.3 ± 1.0, p = 0.86). Four patients withdrew during the study. Hyperglycemia occurred in 6 patients. CONCLUSIONS: Pasireotide lowers plasma ACTH levels in patients with Nelson's syndrome. A longer period of treatment may be needed to assess the effects of pasireotide on tumor volume. TRIAL REGISTRATION: Clinical Trials.gov ID, NCT01617733

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    A randomised, open-label, parallel group phase 2 study of antisense oligonucleotide therapy in acromegaly

    Get PDF
    Objective: ATL1103 is a second-generation antisense oligomer targeting the human growth hormone (GH) receptor. This phase 2 randomised, open-label, parallel-group study assessed the potential of ATL1103 as a treatment for acromegaly. Design: Twenty-six patients with active acromegaly (IGF-I >130% upper limit of normal) were randomised to subcutaneous ATL1103 200mg either once or twice weekly for 13 weeks and monitored for a further 8-week washout period. Methods: The primary efficacy measures were change in IGF-I at week 14, compared to baseline and between cohorts. For secondary endpoints (IGFBP3, acid labile subunit (ALS), GH, growth hormone-binding protein (GHBP)), comparison was between baseline and week 14. Safety was assessed by reported adverse events. Results and conclusions: Baseline median IGF-I was 447 and 649 ng/mL in the once- and twice-weekly groups respectively. Compared to baseline, at week 14, twice-weekly ATL1103 resulted in a median fall in IGF-I of 27.8% (P = 0.0002). Between cohort comparison at week 14 demonstrated the median fall in IGF-I to be 25.8% (P = 0.0012) greater with twice-weekly dosing. In the twice-weekly cohort, IGF-I was still declining at week 14, and remained lower at week 21 than at baseline by a median of 18.7% (P = 0.0005). Compared to baseline, by week 14, IGFBP3 and ALS had declined by a median of 8.9% (P = 0.027) and 16.7% (P = 0.017) with twice-weekly ATL1103; GH had increased by a median of 46% at week 14 (P = 0.001). IGFBP3, ALS and GH did not change with weekly ATL1103. GHBP fell by a median of 23.6% and 48.8% in the once- and twice-weekly cohorts (P = 0.027 and P = 0.005) respectively. ATL1103 was well tolerated, although 84.6% of patients experienced mild-to-moderate injection-site reactions. This study provides proof of concept that ATL1103 is able to significantly lower IGF-I in patients with acromegaly

    Environmental controls, oceanography and population dynamics of pathogens and harmful algal blooms: connecting sources to human exposure

    Get PDF
    © 2008 Author et al. This is an open access article distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Health 7 (2008): S5, doi:10.1186/1476-069X-7-S2-S5.Coupled physical-biological models are capable of linking the complex interactions between environmental factors and physical hydrodynamics to simulate the growth, toxicity and transport of infectious pathogens and harmful algal blooms (HABs). Such simulations can be used to assess and predict the impact of pathogens and HABs on human health. Given the widespread and increasing reliance of coastal communities on aquatic systems for drinking water, seafood and recreation, such predictions are critical for making informed resource management decisions. Here we identify three challenges to making this connection between pathogens/HABs and human health: predicting concentrations and toxicity; identifying the spatial and temporal scales of population and ecosystem interactions; and applying the understanding of population dynamics of pathogens/HABs to management strategies. We elaborate on the need to meet each of these challenges, describe how modeling approaches can be used and discuss strategies for moving forward in addressing these challenges.The authors acknowledge the financial support for the NSF/NIEHS and NOAA Centers for Oceans and Human Healt

    Biogenic Volatile Organic Compound and Respiratory CO2 Emissions after 13C-Labeling: Online Tracing of C Translocation Dynamics in Poplar Plants

    Get PDF
    Globally plants are the primary sink of atmospheric CO(2), but are also the major contributor of a large spectrum of atmospheric reactive hydrocarbons such as terpenes (e.g. isoprene) and other biogenic volatile organic compounds (BVOC). The prediction of plant carbon (C) uptake and atmospheric oxidation capacity are crucial to define the trajectory and consequences of global environmental changes. To achieve this, the biosynthesis of BVOC and the dynamics of C allocation and translocation in both plants and ecosystems are important.We combined tunable diode laser absorption spectrometry (TDLAS) and proton transfer reaction mass spectrometry (PTR-MS) for studying isoprene biosynthesis and following C fluxes within grey poplar (Populus x canescens) saplings. This was achieved by feeding either (13)CO(2) to leaves or (13)C-glucose to shoots via xylem uptake. The translocation of (13)CO(2) from the source to other plant parts could be traced by (13)C-labeled isoprene and respiratory (13)CO(2) emission.In intact plants, assimilated (13)CO(2) was rapidly translocated via the phloem to the roots within 1 hour, with an average phloem transport velocity of 20.3±2.5 cm h(-1). (13)C label was stored in the roots and partially reallocated to the plants' apical part one day after labeling, particularly in the absence of photosynthesis. The daily C loss as BVOC ranged between 1.6% in mature leaves and 7.0% in young leaves. Non-isoprene BVOC accounted under light conditions for half of the BVOC C loss in young leaves and one-third in mature leaves. The C loss as isoprene originated mainly (76-78%) from recently fixed CO(2), to a minor extent from xylem-transported sugars (7-11%) and from photosynthetic intermediates with slower turnover rates (8-11%).We quantified the plants' C loss as respiratory CO(2) and BVOC emissions, allowing in tandem with metabolic analysis to deepen our understanding of ecosystem C flux
    corecore