6 research outputs found

    Latitude dictates plant diversity effects on instream decomposition

    Get PDF
    Running waters contribute substantially to global carbon fluxes through decomposition of terrestrial plant litter by aquatic microorganisms and detritivores. Diversity of this litter may influence instream decomposition globally in ways that are not yet understood. We investigated latitudinal differences in decomposition of litter mixtures of low and high functional diversity in 40 streams on 6 continents and spanning 113 degrees of latitude. Despite important variability in our dataset, we found latitudinal differences in the effect of litter functional diversity on decomposition, which we explained as evolutionary adaptations of litter-consuming detritivores to resource availability. Specifically, a balanced diet effect appears to operate at lower latitudes versus a resource concentration effect at higher latitudes. The latitudinal pattern indicates that loss of plant functional diversity will have different consequences on carbon fluxes across the globe, with greater repercussions likely at low latitudes

    Stable isotope ratios of emergent adult aquatic insects can be used as indicators of water pollution in the hyporheic food web

    No full text
    Bio-assessment protocols for the subsurface domain of river channels (i.e. hyporheic zone) are scarce despite of the known importance of its ecological function in river ecosystems. The larvae of the Alloperla ishikariana Plecoptera species inhabit the hyporheic zone. Therefore, we examined whether emergent adult A. ishikariana could serve as proxy indicators of the effects of pollution in the hyporheic food web. The study site comprised a 15-km stretch of a gravel bed river in Hokkaido, Japan, from which all invertebrates were collected from the riverbed at a depth of 30-50 cm, and emergent A. ishikariana adults were sampled in riparian zones. Water quality changed gradually along the river owing to the effects of a wastewater treatment plant and surrounding land uses. Nitrogen and carbon stable isotope ratios (SIRs) of epilithic biofilms, hyporheic particulate organic matter (POM), benthic POM, and invertebrates were used to determine the major basal carbon sources, the effects of water pollution on the hyporheic zone, and the trophic positions of dominant invertebrates. Generalized linear (mixed) models were used for statistical testing and modeling. Amphipoda and the larvae of A. ishikariana were considered as top predators and secondary consumers in the hyporheic food web, respectively. The observed similarity in water quality between the hyporheic and surface water suggested a large degree of hydrological exchange between the two zones, and resulted in positive increases in the nitrogen SIRs of hyporheic invertebrates, including A. ishikariana larvae, in proportion to nitrate levels in the surface water. The nitrogen SIRs of A. ishikariana adults were significantly correlated with the nitrogen SIRs of their larvae within the same location (adjusted RÂČ = 0.78), indicating that emerged adults can provide information on the longitudinal variability of the effects of synthetic nitrogen. In contrast, the carbon SIRs of adults did not predict those of their larvae, possibly reflecting the diverse feeding habitats of larvae. Overall, we demonstrated that adult aquatic insects emerging from the hyporheic zone can be used as indirect indicators of pollution-associated nutrient assimilation as well as the spatial heterogeneity of dietary carbon resources in hyporheic food web

    Impacts of detritivore diversity loss on instream decomposition are greatest in the tropics

    Get PDF
    It is unclear whether stream detritivore diversity enhances decomposition across climates. Here the authors manipulate litter diversity and examine detritivore assemblages in a globally distributed stream litterbag experiment, finding a positive diversity-decomposition relationship stronger in tropical streams, where detritivore diversity is lower

    Latitude dictates plant diversity effects on instream decomposition

    No full text
    Abstract Running waters contribute substantially to global carbon fluxes through decomposition of terrestrial plant litter by aquatic microorganisms and detritivores. Diversity of this litter may influence instream decomposition globally in ways that are not yet understood. We investigated latitudinal differences in decomposition of litter mixtures of low and high functional diversity in 40 streams on 6 continents and spanning 113° of latitude. Despite important variability in our dataset, we found latitudinal differences in the effect of litter functional diversity on decomposition, which we explained as evolutionary adaptations of litter-consuming detritivores to resource availability. Specifically, a balanced diet effect appears to operate at lower latitudes versus a resource concentration effect at higher latitudes. The latitudinal pattern indicates that loss of plant functional diversity will have different consequences on carbon fluxes across the globe, with greater repercussions likely at low latitudes

    Impacts of detritivore diversity loss on instream decomposition are greatest in the tropics

    Get PDF
    The relationship between detritivore diversity and decomposition can provide information on how biogeochemical cycles are affected by ongoing rates of extinction, but such evidence has come mostly from local studies and microcosm experiments. We conducted a globally distributed experiment (38 streams across 23 countries in 6 continents) using standardised methods to test the hypothesis that detritivore diversity enhances litter decomposition in streams, to establish the role of other characteristics of detritivore assemblages (abundance, biomass and body size), and to determine how patterns vary across realms, biomes and climates. We observed a positive relationship between diversity and decomposition, strongest in tropical areas, and a key role of abundance and biomass at higher latitudes. Our results suggest that litter decomposition might be altered by detritivore extinctions, particularly in tropical areas, where detritivore diversity is already relatively low and some environmental stressors particularly prevalent
    corecore