508 research outputs found

    Czochralski-growth of germanium crystals containing high concentrations of oxygen impurities

    Get PDF
    Oxygen-containing germanium (Ge) single crystals with low density of grown-in dislocations were grown by the Czochralski (CZ) technique from a Ge melt, both with and without a covering by boron oxide (B(2)O(3)) liquid. Interstitially dissolved oxygen concentrations in the crystals were determined by the absorption peak at 855 cm(-1) in the infrared absorption spectra at room temperature. It was found that oxygen concentration in a Ge crystal grown from melt partially or fully covered with B(2)O(3) liquid was about 10(16) cm(-3) and was almost the same as that in a Ge crystal grown without B(2)O(3). Oxygen concentration in a Ge crystal was enhanced to be greater than 10(17) cm(-3) by growing a crystal from a melt fully covered with B(2)O(3); with the addition of germanium oxide powder, the maximum oxygen concentration achieved was 5.5 x 10(17) cm(-3). The effective segregation coefficients of oxygen in the present Ge crystal growth were roughly estimated to be between 1.0 and 1.4.ArticleJOURNAL OF CRYSTAL GROWTH. 312(19):2783-2787 (2010)journal articl

    ZnO nanopowder derived from brass ash: Sintering behavior and mechanical properties

    Get PDF
    The present investigation studied the recycling of zinc from brass ash which is a secondary product produced during the brass smelting process. A retiring cycle was devised to produce high-purity ZnO nanopowders. Recovery of > 90 wt% of the total zinc available was achieved after the calcination of brass ash at 700 °C and a multistage hydrometallurgical treatment at room temperature. ZnO powder produced by the developed method was analyzed by X-ray diffraction, transmission electron scanning microscopy, ICP-AES and BET analysis. The ZnO nanopowder obtained from the brass ash was well dispersed and the size of the individual particles was in the range of 30–50 nm. The purity of the powder was 99.83 wt%, and the surface area was about 30.5 m2/g. A relative density level of about 98.1% was reached with ZnO pellets sintered at 1300 °C

    Magneto-oscillations in the high-magnetic-field state of (TMTSF)(2)ClO4

    Get PDF
    We report a systematic study of the anomalous rapid oscillation (RO) phenomena in the quasi-one-dimensional organic metal (TMTSF)(2)ClO4 in pulsed magnetic fields up to 51 T. We argue that the temperature and magnetic-field dependence of the RO amplitudes in the high-field state result from the reconstructed, nested Fermi surface topology at low temperatures in high magnetic fields. In this topology, the RO amplitudes depend on competing magnetic breakdown and Bragg reflection probabilities, along with Lifshitz-Kosevich reduction factors

    Cadmium Induces p53-Dependent Apoptosis in Human Prostate Epithelial Cells

    Get PDF
    Cadmium, a widespread toxic pollutant of occupational and environmental concern, is a known human carcinogen. The prostate is a potential target for cadmium carcinogenesis, although the underlying mechanisms are still unclear. Furthermore, cadmium may induce cell death by apoptosis in various cell types, and it has been hypothesized that a key factor in cadmium-induced malignant transformation is acquisition of apoptotic resistance. We investigated the in vitro effects produced by cadmium exposure in normal or tumor cells derived from human prostate epithelium, including RWPE-1 and its cadmium-transformed derivative CTPE, the primary adenocarcinoma 22Rv1 and CWR-R1 cells and LNCaP, PC-3 and DU145 metastatic cancer cell lines. Cells were treated for 24 hours with different concentrations of CdCl2 and apoptosis, cell cycle distribution and expression of tumor suppressor proteins were analyzed. Subsequently, cellular response to cadmium was evaluated after siRNA-mediated p53 silencing in wild type p53-expressing RWPE-1 and LNCaP cells, and after adenoviral p53 overexpression in p53-deficient DU145 and PC-3 cell lines. The cell lines exhibited different sensitivity to cadmium, and 24-hour exposure to different CdCl2 concentrations induced dose- and cell type-dependent apoptotic response and inhibition of cell proliferation that correlated with accumulation of functional p53 and overexpression of p21 in wild type p53-expressing cell lines. On the other hand, p53 silencing was able to suppress cadmium-induced apoptosis. Our results demonstrate that cadmium can induce p53-dependent apoptosis in human prostate epithelial cells and suggest p53 mutation as a possible contributing factor for the acquisition of apoptotic resistance in cadmium prostatic carcinogenesis

    Chronic Hepatitis C

    Get PDF
    The goal of antiviral therapy for patients with chronic hepatitis C virus (HCV) infection is to attain a sustained virologic response (SVR), which is defined as undetectable serum HCV-RNA levels at 6 months after the cessation of treatment. Major improvements in antiviral therapy for chronic hepatitis C have occurred in the past decade. The addition of ribavirin to interferon-alfa therapy and the introduction of pegylated interferon (PEG-IFN) have substantially improved SVR rates in patients with chronic hepatitis C. The optimization of HCV therapy with PEG-IFN and ribavirin continues to evolve. Studies are ongoing that use viral kinetics to tailor therapy to an individual's antiviral response and determine the ideal length of treatment to maximize the chance of SVR. Improved SVR can be achieved with new specific inhibitors that target the HCV NS3/4A protease and the NS5B polymerase. Several long-term follow-up studies have shown that SVR, when achieved, is associated with a very low risk of virologic relapse. Furthermore, antiviral therapy can reduce the morbidity and mortality rates associated with chronic hepatitis C by reducing fibrosis progression, the incidence of cirrhosis, and hepatocellular carcinoma

    International Study Group Progress Report On Linear Collider Development

    Get PDF

    Inclusive and multiplicity dependent production of electrons from heavy-flavour hadron decays in pp and p-Pb collisions

    Get PDF
    Measurements of the production of electrons from heavy-flavour hadron decays in pp collisions at root s = 13 TeV at midrapidity with the ALICE detector are presented down to a transverse momentum (p(T)) of 0.2 GeV/c and up to p(T) = 35 GeV/c, which is the largest momentum range probed for inclusive electron measurements in ALICE. In p-Pb collisions, the production cross section and the nuclear modification factor of electrons from heavy-flavour hadron decays are measured in the p(T) range 0.5 < p(T) < 26 GeV/c at root s(NN) = 8.16 TeV. The nuclear modification factor is found to be consistent with unity within the statistical and systematic uncertainties. In both collision systems, first measurements of the yields of electrons from heavy-flavour hadron decays in different multiplicity intervals normalised to the multiplicity-integrated yield (self-normalised yield) at midrapidity are reported as a function of the self-normalised charged-particle multiplicity estimated at midrapidity. The self-normalised yields in pp and p-Pb collisions grow faster than linear with the self-normalised multiplicity. A strong p(T) dependence is observed in pp collisions, where the yield of high-p(T) electrons increases faster as a function of multiplicity than the one of low-p(T) electrons. The measurement in p-Pb collisions shows no p(T) dependence within uncertainties. The self-normalised yields in pp and p-Pb collisions are compared with measurements of other heavy-flavour, light-flavour, and strange particles, and with Monte Carlo simulations
    • …
    corecore