67 research outputs found

    Convergent-flow tracer tests in heterogeneous media: combined experimental–numerical analysis for determination of equivalent transport parameters

    Get PDF
    In modeling transport within naturally heterogeneous aquifers, it is usually assumed that the transport equations valid at local scales can also be applied at larger scales. At larger scales, the heterogeneous domain is represented by an equivalent homogeneous medium. Convergent-flow tracer tests constitute one of the most frequently used field tests to estimate effective input parameters of equivalent homogeneous aquifers. Traditionally, statistical approaches applied to groundwater flow and solute transport have provided tools to estimate these equivalent parameters. These approaches are based on a number of simplifications including the assumption that the point transmissivity values follow a multilog-normal random function. Several investigators have found that this assumption may not be valid in many field cases. In order to study the applicability of the equivalent homogeneous formulation in a nontraditional stochastic field, a number of experimental and numerical studies were conducted. The results are used to determine the apparent values of porosity and dispersivity that would be obtained if convergent-flow tracer tests were conducted in a deterministically generated heterogeneous transmissivity field displaying anisotropy in the correlation structure. It is shown that in this particular heterogeneous media, apparent porosity strongly depends on connectivity rather than on transmissivity. This dependence on connectivity questions the theoretical results obtained in continuum equivalent fields to estimate effective porosity

    COMPUTATIONAL METHODOLOGY TO ANALYZE THE EFFECT OF MASS TRANSFER RATE ON ATTENUATION OF LEAKED CARBON DIOXIDE IN SHALLOW AQUIFERS

    Get PDF
    Exsolution and re-dissolution of CO2 gas within heterogeneous porous media are investigated using experimental data and mathematical modeling. In a set of bench-scale experiments, water saturated with CO2 under a given pressure is injected into a 2-D water-saturated porous media system, causing CO2 gas to exsolve and migrate upwards. A layer of fine sand mimicking a heterogeneity within a shallow aquifer is present in the tank to study accumulation and trapping of exsolved CO2. Then, clean water is injected into the system and the accumulated CO2 dissolves back into the flowing water. Simulated exsolution and dissolution mass transfer processes are studied using both nearequilibrium and kinetic approaches and compared to experimental data under conditions that do and do not include lateral background water flow. The mathematical model is based on the mixed hybrid finite element method that allows for accurate simulation of both advection- and diffusion- dominated processes

    Thank You to Our 2020 Peer Reviewers

    Get PDF
    Thank you to the reviewers of AGU Advances. In 2020, we all faced the enormous and unexpected challenges of the Covid‐19 pandemic, with its host of new and competing demands on our time. Thus, we are especially grateful to the 154 people who provided reviews for AGU Advances and helped our fledgling journal complete its first year. Peer‐review is essential to the process of doing and publishing science, and our reviewers have helped define our new journal by indicating papers expected to have broad impact that advance a discipline, have broad impact across disciplines, or have policy relevance. All papers submitted to AGU Advances first go through an editorial consultation. We are committed to respecting reviewers’ time and only send papers for review that the consulting editors agree meet our criteria. Sometimes this means we send papers back to the authors with suggestions how to improve the fit to our journal. Another way we try to streamline the review process is by giving the authors the option to transfer reviews if after review we decide the paper is better suited to another AGU journal. As a relatively new journal, we still have few enough reviewers that we do not want to identify them by name. Nonetheless, you know who you are. Please accept our sincere thanks for generously sharing your expertise and working to improve AGU Advances

    Confronting Racism to Advance Our Science

    Get PDF
    As individuals serving on the AGU Advances editorial board, we condemn racism, affirm that Black Lives Matter, and recognize that inequality is built into the systems that have allowed us to prosper. We aim to persistently foster discussion about racism, inequity, and the need to make our community more diverse and inclusive. This will help AGU Advances do a better job in publishing important science that inclusively reflects the ideas and contributions of all in our community

    Impacts of the 2004 tsunami on groundwater resources in Sri Lanka, Water Resour

    Get PDF
    [1] The 26 December 2004 tsunami caused widespread destruction and contamination of coastal aquifers across southern Asia. Seawater filled domestic open dug wells and also entered the aquifers via direct infiltration during the first flooding waves and later as ponded seawater infiltrated through the permeable sands that are typical of coastal aquifers. In Sri Lanka alone, it is estimated that over 40,000 drinking water wells were either destroyed or contaminated. From February through September 2005, a team of United States, Sri Lankan, and Danish water resource scientists and engineers surveyed the coastal groundwater resources of Sri Lanka to develop an understanding of the impacts of the tsunami and to provide recommendations for the future of coastal water resources in south Asia. In the tsunami-affected areas, seawater was found to have infiltrated and mixed with fresh groundwater lenses as indicated by the elevated groundwater salinity levels. Seawater infiltrated through the shallow vadose zone as well as entered aquifers directly through flooded open wells. Our preliminary transport analysis demonstrates that the intruded seawater has vertically mixed in the aquifers because of both forced and free convection. Widespread pumping of wells to remove seawater was effective in some areas, but overpumping has led to upconing of the saltwater interface and rising salinity. We estimate that groundwater recharge from several monsoon seasons will reduce salinity of many sandy Sri Lankan coastal aquifers. However, the continued sustainability of these small and fragile aquifers for potable water will be difficult because of the rapid growth of human activities that results in more intensive groundwater pumping and increased pollution. Long-term sustainability of coastal aquifers is also impacted by the decrease in sand replenishment of the beaches due to sand mining and erosion

    Imaging and quantification of spreading and trapping of carbon dioxide in saline aquifers using meter-scale laboratory experiments

    Get PDF
    The role of capillary forces during buoyant migrati on of CO2 is critical towards plume immobilization within the post-injection phase of a geological carbon sequestration operation. However, the inherent heterogeneity of the subsurface makes it very challenging to evaluate the effects of capillary forces on the storage capacity of these formations and to assess in-situ plume evolution. To overcome the lack of accurate and continuous observations at the field scale and to mimic vertical migration and entrapment of realistic CO2 plumes in the presence of a background hydraulic gradient, we conducted two unique long-te rm experiments in a 2.44 m × 0.5 m tank. X-ray attenuation allowed measuring the evolution of a CO2-surrogate fluid saturation, thus providing direct insight into capillarity- and buoyancy-domin ated flow processes occurring under successive drainage and imbibition conditions. The comparison of saturation distributions between two experimental campaigns suggests that layered-type h eterogeneity plays an important role on non- wetting phase (NWP) migration and trapping, because it leads to (i) longer displacement times (3.6 months vs. 24 days) to reach stable trapping c onditions, (ii) limited vertical migration of the plume (with center of mass at 39% vs. 55% of aquife r thickness), and (iii) immobilization of a larger fraction of injected NWP mass (67.2% vs. 51. 5% of injected volume) as compared to the homogenous scenario. While these observations confirm once more the role of geological heterogeneity in controlling buoyant flows in the s ubsurface, they also highlight the importance of characterizing it at scales that are below seismic resolution (1-10 m)

    Twenty-three unsolved problems in hydrology (UPH) – a community perspective

    Get PDF
    This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through on-line media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focussed on process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come
    • 

    corecore