54 research outputs found

    A note on comonotonicity and positivity of the control components of decoupled quadratic FBSDE

    Get PDF
    In this small note we are concerned with the solution of Forward-Backward Stochastic Differential Equations (FBSDE) with drivers that grow quadratically in the control component (quadratic growth FBSDE or qgFBSDE). The main theorem is a comparison result that allows comparing componentwise the signs of the control processes of two different qgFBSDE. As a byproduct one obtains conditions that allow establishing the positivity of the control process.Comment: accepted for publicatio

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    First proton-proton collisions at the LHC as observed with the ALICE detector: measurement of the charged-particle pseudorapidity density at root s=900 GeV

    Get PDF
    -On 23rd November 2009, during the early commissioning of the CERN Large Hadron Collider (LHC), two counter-rotating proton bunches were circulated for the first time concurrently in the machine, at the LHC injection energy of 450 GeV per beam. Although the proton intensity was very low, with only one pilot bunch per beam, and no systematic attempt was made to optimize the collision optics, all LHC experiments reported a number of collision candidates. In the ALICE experiment, the collision region was centred very well in both the longitudinal and transverse directions and 284 events were recorded in coincidence with the two passing proton bunches. The events were immediately reconstructed and analyzed both online and offline. We have used these events to measure the pseudorapidity density of charged primary particles in the central region. In the range vertical bar eta vertical bar S collider. They also illustrate the excellent functioning and rapid progress of the LHC accelerator, and of both the hardware and software of the ALICE experiment, in this early start-up phase

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    ALICE HLT High Speed Tracking on GPU

    No full text
    The on-line event reconstruction in ALICE is performed by the High Level Trigger, which should process up to 2000 events per second in proton-proton collisions and up to 300 central events per second in heavy-ion collisions, corresponding to an inp ut data stream of 30 GB/s. In order to fulfill the time requirements, a fast on-line tracker has been developed. The algorithm combines a Cellular Automaton method being used for a fast pattern recognition and the Kalman Filter method for fitting of found trajectories and for the final track selection. The tracker was adapted to run on Graphics Processing Units (GPU) using the NVIDIA Compute Unified Device Architecture (CUDA) framework. The implementation of the algorithm had to be adjusted at many points to allow for an efficient usage of the graphics cards. In particular, achieving a good overall workload for many processor cores, efficient transfer to and from the GPU, as well as optimized utilization of the different memories the GPU offers turned out to be critical. To cope with these problems a dynamic scheduler was introduced, which redistributes the workload among the processor cores. Additionally a pipeline was implemented so that the tracking on the GPU, the initialization and the output process ed by the CPU, as well as the DMA transfer can overlap. The GPU tracking algorithm significantly outperforms the CPU version for large events while it entirely maintains its efficiency

    Charge separation relative to the reaction plane in Pb-Pb collisions at sNN\sqrt{s_{NN}}= 2.76 TeV

    No full text
    Measurements of charge dependent azimuthal correlations with the ALICE detector at the LHC are reported for Pb-Pb collisions at sNN\sqrt{s_{NN}} = 2.76 TeV. Two- and three-particle charge-dependent azimuthal correlations in the pseudo-rapidity range η<0.8|\eta | < 0.8 are presented as a function of the collision centrality, particle separation in pseudo-rapidity, and transverse momentum. A clear signal compatible with the expectation of a charge-dependent separation relative to the reaction plane is observed, which shows little or no collision energy dependence when compared to measurements at RHIC energies. Models incorporating effects of local parity violation in strong interactions fail to describe the observed collision energy dependence

    J/psipsi suppression at forward rapidity in Pb-Pb collisions at sNN\sqrt{s_{NN}} = 2.76 TeV

    No full text
    The ALICE experiment has measured the inclusive J/ψ production in Pb-Pb collisions at √sNN = 2.76 TeV down to pt = 0 in the rapidity range 2.5 < y < 4. A suppression of the inclusive J/ψ yield in Pb-Pb is observed with respect to the one measured in pp collisions scaled by the number of binary nucleon-nucleon collisions. The nuclear modification factor, integrated over the 0%–80% most central collisions, is 0.545 ± 0.032(stat.) ± 0.084(syst.) and does not exhibit a significant de- pendence on the collision centrality. These features appear significantly different from lower energy measurements. Models including J/ψ production from charm quarks in a deconfined partonic phase can describe our data

    Suppression of high transverse momentum D mesons in central Pb--Pb collisions at sNN=2.76\sqrt{s_{NN}}=2.76 TeV

    No full text
    The production of the prompt charm mesons D0D^0, D+D^+, D+D^{*+}, and their antiparticles, was measured with the ALICE detector in Pb-Pb collisions at the LHC, at a centre-of-mass energy sNN=2.76\sqrt{s_{NN}}=2.76 TeV per nucleon--nucleon collision. The ptp_t-differential production yields in the range 2<pt<162<p_t<16 GeV/c at central rapidity, y<0.5|y|<0.5, were used to calculate the nuclear modification factor RAAR_{AA} with respect to a proton-proton reference obtained from the cross section measured at s=7\sqrt{s}=7 TeV and scaled to s=2.76\sqrt{s}=2.76 TeV. For the three meson species, RAAR_{AA} shows a suppression by a factor 3-4, for transverse momenta larger than 5 GeV/c in the 20% most central collisions. The suppression is reduced for peripheral collisions
    corecore