264 research outputs found

    H-2-driven biotransformation of n-octane to 1-octanol by a recombinant Pseudomonas putida strain co-synthesizing an O-2-tolerant hydrogenase and a P450 monooxygenase

    Get PDF
    An in vivo biotransformation system is presented that affords the hydroxylation of n-octane to 1-octanol on the basis of NADH-dependent CYP153A monooxygenase and NAD(+)-reducing hydrogenase heterologously synthesized in a bacterial host. The hydrogenase sustains H-2-driven NADH cofactor regeneration even in the presence of O-2, the co-substrate of monooxygenase.DFG, EXC 314, Unifying Concepts in CatalysisEC/FP7/297503/EU/Modular beads for regeneration of bio-cofactors in enzyme-catalysed synthesis/HydRege

    Infrared-faint radio sources: A new population of high-redshift radio galaxies

    Get PDF
    We present a sample of 1317 Infrared-faint radio sources (IFRSs) that, for the first time, are reliably detected in the infrared, generated by cross-correlating the Wide-field Infrared Survey Explorer (WISE) all-sky survey with major radio surveys. Our IFRSs are brighter in both radio and infrared than the first-generation IFRSs that were undetected in the infrared by the Spitzer Space Telescope. We present the first spectroscopic redshifts of IFRSs, and find that all but one of the IFRSs with spectroscopy have z > 2. We also report the first X-ray counterparts of IFRSs, and present an analysis of radio spectra and polarization, and show that they include gigahertz peaked-spectrum, compact steep-spectrum and ultra-steep-spectrum sources. These results, together with their WISE infrared colours and radio morphologies, imply that our sample of IFRSs represents a population of radio-loud active galactic nuclei at z > 2. We conclude that our sample consists of lower redshift counterparts of the extreme first-generation IFRSs, suggesting that the fainter IFRSs are at even higher redshift

    IR and UV Galaxies at z=0.6 -- Evolution of Dust Attenuation and Stellar Mass as Revealed by SWIRE and GALEX

    Get PDF
    We study dust attenuation and stellar mass of z0.6\rm z\sim 0.6 star-forming galaxies using new SWIRE observations in IR and GALEX observations in UV. Two samples are selected from the SWIRE and GALEX source catalogs in the SWIRE/GALEX field ELAIS-N1-00 (Ω=0.8\Omega = 0.8 deg2^2). The UV selected sample has 600 galaxies with photometric redshift (hereafter photo-z) 0.5z0.70.5 \leq z \leq 0.7 and NUV23.5\leq 23.5 (corresponding to \rm L_{FUV} \geq 10^{9.6} L_\sun). The IR selected sample contains 430 galaxies with f24μm0.2f_{24\mu m} \geq 0.2 mJy (\rm L_{dust} \geq 10^{10.8} L_\sun) in the same photo-z range. It is found that the mean Ldust/LFUV\rm L_{dust}/L_{FUV} ratios of the z=0.6 UV galaxies are consistent with that of their z=0 counterparts of the same LFUV\rm L_{FUV}. For IR galaxies, the mean Ldust/LFUV\rm L_{dust}/L_{FUV} ratios of the z=0.6 LIRGs (\rm L_{dust} \sim 10^{11} L_\sun) are about a factor of 2 lower than local LIRGs, whereas z=0.6 ULIRGs (\rm L_{dust} \sim 10^{12} L_\sun) have the same mean Ldust/LFUV\rm L_{dust}/L_{FUV} ratios as their local counterparts. This is consistent with the hypothesis that the dominant component of LIRG population has changed from large, gas rich spirals at z>0.5>0.5 to major-mergers at z=0. The stellar mass of z=0.6 UV galaxies of \rm L_{FUV} \leq 10^{10.2} L_\sun is about a factor 2 less than their local counterparts of the same luminosity, indicating growth of these galaxies. The mass of z=0.6 UV lunmous galaxies (UVLGs: \rm L_{FUV} > 10^{10.2} L_\sun) and IR selected galaxies, which are nearly exclusively LIRGs and ULIRGs, is the same as their local counterparts.Comment: 27 pages, 8 figures, to be published in the Astrophysical Journal Supplement series dedicated to GALEX result

    The Far-Infrared Spectral Energy Distributions of X-ray-selected Active Galaxies

    Get PDF
    [Abridged] We present ISO far-infrared (IR) observations of 21 hard X-ray selected AGN from the HEAO-1 A2 sample. We compare the far-IR to X-ray spectral energy distributions (SEDs) of this sample with various radio and optically selected AGN samples. The hard-X-ray selected sample shows a wider range of optical/UV shapes extending to redder near-IR colors. The bluer objects are Seyfert 1s, while the redder AGN are mostly intermediate or type 2 Seyferts. This is consistent with a modified unification model in which the amount of obscuring material increases with viewing angle and may be clumpy. Such a scenario, already suggested by differing optical/near-IR spectroscopic and X-ray AGN classifications, allows for different amounts of obscuration of the continuum emission in different wavebands and of the broad emission line region which results in a mixture of behaviors for AGN with similar optical emission line classifications. The resulting limits on the column density of obscuring material through which we are viewing the redder AGN are 100 times lower than for the standard optically thick torus models. The resulting decrease in optical depth of the obscuring material allows the AGN to heat more dust at larger radial distances. We show that an AGN-heated, flared, dusty disk with mass 10^9 solar and size of few hundred pc is able to generate optical-far-IR SEDs which reproduce the wide range of SEDs present in our sample with no need for an additional starburst component to generate the long-wavelength, cooler part of the IR continuum.Comment: 40 pages, 14 figures, accepted for publication in Astrophysical Journal, V. 590, June 10, 200

    Spitzer Photometry of WISE-Selected Brown Dwarf and Hyper-Luminous Infrared Galaxy Candidates

    Get PDF
    We present Spitzer 3.6 and 4.5 μ\mum photometry and positions for a sample of 1510 brown dwarf candidates identified by the WISE all-sky survey. Of these, 166 have been spectroscopically classified as objects with spectral types M(1), L(7), T(146), and Y(12); Sixteen other objects are non-(sub)stellar in nature. The remainder are most likely distant L and T dwarfs lacking spectroscopic verification, other Y dwarf candidates still awaiting follow-up, and assorted other objects whose Spitzer photometry reveals them to be background sources. We present a catalog of Spitzer photometry for all astrophysical sources identified in these fields and use this catalog to identify 7 fainter (4.5 μ\mum \sim 17.0 mag) brown dwarf candidates, which are possibly wide-field companions to the original WISE sources. To test this hypothesis, we use a sample of 919 Spitzer observations around WISE-selected high-redshift hyper-luminous infrared galaxy (HyLIRG) candidates. For this control sample we find another 6 brown dwarf candidates, suggesting that the 7 companion candidates are not physically associated. In fact, only one of these 7 Spitzer brown dwarf candidates has a photometric distance estimate consistent with being a companion to the WISE brown dwarf candidate. Other than this there is no evidence for any widely separated (>> 20 AU) ultra-cool binaries. As an adjunct to this paper, we make available a source catalog of \sim 7.33 ×105\times 10^5 objects detected in all of these Spitzer follow-up fields for use by the astronomical community. The complete catalog includes the Spitzer 3.6 and 4.5 μ\mum photometry, along with positionally matched BB and RR photometry from USNO-B; JJ, HH, and KsK_s photometry from 2MASS; and W1W1, W2W2, W3W3, and W4W4 photometry from the WISE all-sky catalog

    H 2

    Get PDF
    We describe implementation of a system of immobilised enzymes for H2-driven NADH recycling coupled to a selective biotransformation to enable H2-driven biocatalysis in flow. This approach represents a platform that can be optimised for a wide range of hydrogenation steps and is shown here for enantioselective ketone reduction and reductive amination

    The VIMOS VLT Deep Survey: Tracing the galaxy stellar mass assembly history over the last 8Gyr

    Get PDF
    We selected a mass-limited sample of 4048 objects from the VIMOS VLT Deep Survey in the redshift interval 0.5<z<1.3. We used the amplitude of the 4000 Balmer break (Dn4000) to separate the galaxy population and the EW[OII]3727 line as proxy for the star formation activity. We discuss to what extent stellar mass drives galaxy evolution, showing for the first time the interplay between stellar ages and stellar masses over the past 8Gyr. Low-mass galaxies have small Dn4000 and at increasing stellar mass, the galaxy distribution moves to higher Dn4000 values as observed in the local Universe. As cosmic time goes by, we witness an increasing abundance of massive spectroscopically ET systems at the expense of the LT systems. This spectral transformation is a process started at early epochs and continuing efficiently down to the local Universe. This is confirmed by the evolution of our type-dependent stellar mass function. The underlying stellar ages of LT galaxies apparently do not show evolution, likely as a result of a continuous formation of new stars. All star formation activity indicators consistently point towards a star formation history peaked in the past for massive galaxies, with little or no residual star formation taking place in the most recent epochs. The activity and efficiency of forming stars are mechanisms that depend on stellar mass, and the mass assembly becomes progressively less efficient in massive systems as time elapses. The concepts of star formation downsizing and mass assembly downsizing describe a single scenario that has a top-down evolutionary pattern. The role of (dry) merging events seems to be only marginal at z<1.3, as our estimated efficiency in stellar mass assembly can possibly account for the progressive accumulation of passively evolving galaxies.Comment: Accepted for pubblication in A&A, 14 pages, 5 figure

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    Galaxy Counts at 24 Microns in the SWIRE Fields

    Get PDF
    This paper presents galaxy source counts at 24 microns in the six Spitzer Wide-field InfraRed Extragalactic (SWIRE) fields. The source counts are compared to counts in other fields, and to model predictions that have been updated since the launch of Spitzer. This analysis confirms a very steep rise in the Euclidean-normalized differential number counts between 2 mJy and 0.3 mJy. Variations in the counts between fields show the effects of sample variance in the flux range 0.5-10 mJy, up to 100% larger than Poisson errors. Nonetheless, a "shoulder" in the normalized counts persists at around 3 mJy. The peak of the normalized counts at 0.3 mJy is higher and narrower than most models predict. In the ELAIS N1 field, the 24 micron data are combined with Spitzer-IRAC data and five-band optical imaging, and these bandmerged data are fit with photometric redshift templates. Above 1 mJy the counts are dominated by galaxies at z less than 0.3. By 300 microJy, about 25% are between z ~ 0.3-0.8, and a significant fraction are at z ~ 1.3-2. At low redshifts the counts are dominated by spirals, and starbursts rise in number density to outnumber the spirals' contribution to the counts below 1 mJy.Comment: 10 pages, 8 figures, accepted 3 November 2007 for publication in The Astronomical Journal, formatted with emulateapj styl
    corecore